Learn More
Usher syndrome type 1 describes the association of profound, congenital sensorineural deafness, vestibular hypofunction and childhood onset retinitis pigmentosa. It is an autosomal recessive condition and is subdivided on the basis of linkage analysis into types 1A through 1E. Usher type 1C maps to the region containing the genes ABCC8 and KCNJ11 (encoding(More)
Ion channelopathies have now been described in many well-characterized cell types including neurons, myocytes, epithelial cells, and endocrine cells. However, in only a few cases has the relationship between altered ion channel function, cell biology, and clinical disease been defined. Hyperinsulinism in infancy (HI) is a rare, potentially lethal condition(More)
Mutations in genes encoding the ATP-regulated potassium (K(ATP)) channels of the pancreatic beta-cell (SUR1 and Kir6.2) are the major known cause of persistent hyperinsulinemic hypoglycemia of infancy (PHHI). We collected all cases of PHHI diagnosed in Finland between 1983 and 1997 (n = 24). The overall incidence was 1:40,400, but in one area of Central(More)
Because glucokinase is a metabolic sensor involved in the regulated release of insulin, we have investigated the acute actions of novel glucokinase activator compound 50 (GKA50) on islet function. Insulin secretion was determined by enzyme-linked immunosorbent assay, and microfluorimetry with fura-2 was used to examine intracellular Ca(2+) homeostasis(More)
K+ channels in cultured rat pancreatic islet cells have been studied using patch-clamp single-channel recording techniques in cell-attached and excised inside-out and outside-out membrane patches. Three different K+-selective channels have been found. Two inward rectifier K+ channels with slope conductances of about 4 and 17 pS recorded under(More)
Persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is a disorder of childhood associated with inappropriate hypersecretion of insulin by the pancreas. The pathogenesis of the condition has hitherto remained controversial. We show here that insulin-secreting cells from a homogeneous group of five infants with PHHI lack ATP-sensitive K+ channel (KATP)(More)
The31P-NMR technique has been used to assess the intracellular ratios and concentrations of mobile ATP and ADP and the intracellular pH in an insulin-secreting cell line, RINm5F. The single-channel current-recording technique has been used to investigate the effects of changes in the concentrations of ATP and ADP on the gating of nucleotide-dependent K+(More)
K+ channels that can be inhibited by intracellular ATP have been found in many different cell types. In the insulin-secreting pancreatic islet cells these channels are of crucial importance for stimulus-secretion coupling as glucose stimulation closes the ATP-sensitive channels which leads to depolarization and firing of Ca2+ action potentials. We now(More)