Learn More
BACKGROUND The Xpert MTB/RIF test (Cepheid, Sunnyvale, CA, USA) can detect tuberculosis and its multidrug-resistant form with very high sensitivity and specificity in controlled studies, but no performance data exist from district and subdistrict health facilities in tuberculosis-endemic countries. We aimed to assess operational feasibility, accuracy, and(More)
Current nucleic acid amplification methods to detect Mycobacterium tuberculosis are complex, labor-intensive, and technically challenging. We developed and performed the first analysis of the Cepheid Gene Xpert System's MTB/RIF assay, an integrated hands-free sputum-processing and real-time PCR system with rapid on-demand, near-patient technology, to(More)
BACKGROUND Xpert MTB/RIF (Xpert) is a promising new rapid diagnostic technology for tuberculosis (TB) that has characteristics that suggest large-scale roll-out. However, because the test is expensive, there are concerns among TB program managers and policy makers regarding its affordability for low- and middle-income settings. METHODS AND FINDINGS We(More)
Mycobacterium tuberculosis can persist in sputum for long periods of time after the initiation of antituberculosis chemotherapy. The purpose of this study was to determine whether quantitative estimates of M. tuberculosis DNA in sputum correlate with the numbers of viable bacilli and thus measure the therapeutic response of patients during treatment. Two(More)
Human infection with Mycobacterium tuberculosis can progress to active disease, be contained as latent infection, or be eradicated by the host response. Tuberculosis diagnostics classify a patient into one of these categories. These are not fixed distinct states, but rather are continua along which patients can move, and are affected by HIV infection,(More)
BACKGROUND Malaria rapid diagnostic tests (RDTs) offer significant potential to improve the diagnosis of malaria, and are playing an increasing role in malaria case management, control and elimination. Peru, along with other South American countries, is moving to introduce malaria RDTs as components of malaria control programmes supported by the Global Fund(More)
This product is part of the RAND Health working paper series. RAND working papers are intended to share researchers' latest findings and to solicit informal peer review. They have been approved for circulation by RAND Health but have not been formally edited or peer reviewed. Unless otherwise indicated, working papers can be quoted and cited without(More)
BACKGROUND Current malaria diagnostic tests, including microscopy and antigen-detecting rapid tests, cannot reliably detect low-density infections. Molecular methods such as polymerase chain reaction (PCR) are highly sensitive but remain too complex for field deployment. A new commercial molecular assay based on loop-mediated isothermal amplification (LAMP)(More)
Diagnostic testing for malaria has for many years been eschewed, lest it be an obstacle to the delivery of rapid, life-saving treatment. The approach of treating malaria without confirmatory testing has been reinforced by the availability of inexpensive treatment with few side effects, by the great difficulty of establishing quality-assured microscopy in(More)