Learn More
The thymus represents the major site of the production and generation of T cells expressing alphabeta-type T-cell antigen receptors. Age-related involution may affect the ability of the thymus to reconstitute T cells expressing CD4 cell-surface antigens that are lost during HIV infection; this effect has been seen after chemotherapy and bone-marrow(More)
U1 and ACH-2 cells are subclones of HIV-1-infected monocyte/macrophage-like and T lymphocyte cell lines, respectively, which express the HIV-1 genome at very low levels. We have examined whether they might provide a model of HIV-1 latency. The patterns of HIV-1-specific RNA expressed in these cells consisted of singly and multiply spliced RNA species, with(More)
BACKGROUND The ability of emerging pathogens to infect new species is likely related to the diversity of pathogen variants present in existing reservoirs and their degree of genomic plasticity, which determines their ability to adapt to new environments. Certain simian immunodeficiency viruses (SIVcpz, SIVsm) have demonstrated tremendous success in(More)
Considerable controversy and uncertainty have surrounded the biological function of the Human Immunodeficiency Virus (HIV)-1 nef gene product. Initial studies suggested that this early, nonstructural viral protein functioned as a negative regulatory factor; thus, it was proposed to play a role in establishing or maintaining viral latency. In contrast,(More)
The African green monkey nonlymphoid cell line cos-1 produces infectious HTLV-III virus following transfection with biologically active molecular clones of HTLV-III. Transfected cos-1 cells produce large amounts of viral RNA and protein. We have used this rapid transfection system to study the regulatory functions and synthetic capacity of the HTLV-III(More)
T he need for a human immunodeficiency virus–1 (HIV-1) vaccine is unques-tioned, and we strongly support its development as the highest AIDS research priority. We have a concern about the wisdom of the U.S. government's sponsoring a recently initiated phase III trial in Thailand of a vaccine made from the live-replicating canarypox vector ALVAC (from(More)
The envelope protein of human immunodeficiency virus (HIV) is synthesized as a polyprotein (gp160) and cleaved intracellularly to a gp120-gp41 heterodimer. In this study, the tryptic-like endoproteolytic cleavage site was removed by site-directed mutagenesis and replaced with a chymotryptic-like site. The resultant mutant, RIP7/mut10, was found to be(More)
Formation of syncytia, with progression to cell death, is a characteristic feature of in vitro cultures of susceptible cells infected with human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). Viral antigen-positive multinucleated giant cells have also been observed in histological sections from infected individuals. In vitro,(More)
Studies of the genomic structure of human T-lymphotropic virus type III (HTLV-III) and related viruses, implicated as the causal agent of acquired immune deficiency syndrome (AIDS), have identified a sixth open reading frame in addition to the five previously known within the genome (gag, pol, sor, env and 3'orf). This gene, called tat-III, lies between the(More)
As a step toward developing poliovirus as a vaccine vector, poliovirus recombinants were constructed by fusing exogenous peptides (up to 400 amino acids) and an artificial cleavage site for viral protease 3Cpro to the amino terminus of the viral polyprotein. Viral replication proceeded normally. An extended polyprotein was produced in infected cells and(More)