Mark B. Chadwick

Learn More
– New accelerator-driven technologies that utilize spallation neutrons, such as the production of tritium and the transmutation of radioactive waste, require accurate nuclear data to model the performance of the target/blanket assembly and to predict neutron production, activation, heating, shielding requirements, and material damage. To meet these needs,(More)
Neutron cross sections for nonelastic and elastic reactions on a range of elements have been evaluated for incident energies up to 150 MeV. These cross sections agree well with experimental cross section data for charged-particle production as well as neutron and photon production. Therefore they can be used to determine kerma coefficients for calculations(More)
The Subgroup A activities focus on the development of nuclear reaction models and codes, used in evaluation work for nuclear reactions from the unresolved energy region up to the pion threshold production limit, and for target nuclides from the low teens and heavier. Much of the efforts are devoted by each participant to the continuing development of their(More)
I review recent work at Los Alamos undertaken to evaluate neutron, proton, and photonuclear cross-sections up to 150 MeV (to 250 MeV for protons), based on experimental data and nuclear model calculations. These data are represented in the ENDF format and can be used in computer codes to simulate radiation transport. They permit calculations of absorbed(More)
An ICRU report entitled "Nuclear Data for Neutron and Proton Radiotherapy and for Radiation Protection" is in preparation. The present paper presents an overview of this report, along with examples of some of the results obtained for evaluated nuclear cross sections and kerma coefficients. These cross sections are evaluated using a combination of measured(More)
The preequilibrium (nucleon-in, nucleon-out) angular distributions of 27 Al, 58 Ni and 90 Zr have been analyzed in the energy region from 90 to 200 MeV in terms of the Quantum Moleculear Dynamics (QMD) theory. First, we show that the present approach can reproduce the measured (p,xp') and (p,xn) angular distributions leading to continuous final states(More)
Modern ionising photon dosimetry is essentially entirely based upon gas-filled cavity determinations. For photons, ion chamber response is largely independent of photon energy almost perfectly transforming absorbed dose in the gas to the surrounding media. Absolute uncertainties are <1-2%. For fast neutron dosimetry, this is certainly not the case.(More)
Researchers at Los Alamos National Laboratory are considering the possibility of using the Low Energy Demonstration Accelerator, constructed at Los Alamos Neutron Science Center for the Accelerator Production of Tritium Project, as a neutron source. Evaluated nuclear data are needed for the p+ 7 Li reaction, to predict neutron production from thin and thick(More)
The neutron capture cross section of (235)U was measured for the neutron incident energy region between 4 eV and 1 MeV at the DANCE facility at the Los Alamos Neutron Science Center with an unprecedented accuracy of 2-3% at 1 keV. The new methodology combined three independent measurements. In the main experiment, a thick actinide sample was used to(More)