Mark B. Badrov

Learn More
Isometric handgrip (IHG) training lowers resting blood pressure (BP) in both hypertensives and normotensives, yet the effect of training dose on the magnitude of reduction and the mechanisms associated with the hypotensive response are elusive. We investigated, in normotensive women, the effects of two different doses of IHG training on resting BP, and(More)
This study aimed to determine whether: (a) isometric handgrip (IHG) training lowers resting blood pressure (BP), (b) cardiovascular reactivity to a serial subtraction (SST), IHG (IHGT), and cold pressor (CPT) task predicts this hypotensive response, and (c) cardiovascular reactivity is attenuated posttraining. Resting BP and cardiovascular reactivity to a(More)
Isometric resistance training has repeatedly shown to be an effective exercise modality in lowering resting blood pressure (BP), yet associated mechanisms and sex differences in the response to training remain unclear. Exploration into potential sex differences in the response to isometric resistance training is necessary, as it may allow for more optimal(More)
This study tested the hypothesis that neural coding patterns exist within the autonomic nervous system. We investigated sympathetic axonal recruitment strategies in humans during chemoreflex- and baroreflex-mediated sympathoexcitation using a novel action potential (AP) analysis technique. Muscle sympathetic nerve activity (microneurography) was collected(More)
This study quantified the effect of age on cerebrovascular reactivity and cerebrovascular conductance while accounting for differences in grey matter volume in younger (YA: n = 12; 24 ± 4 years, six females) and older adults (OA: n = 10; 66 ± 7 years; five females). Cerebral blood flow velocity (CBFV; transcranial Doppler) in the middle cerebral artery(More)
This exploratory study assessed the pattern of closed-loop baroreflex resetting using multi-logistic-curve analysis. Operating point gain and ranges of RR-interval (RRI) and systolic blood pressure (SBP) are derived to examine how these relate to sympathetic activation. Sustained low-intensity isometric handgrip exercise, with a period of post-exercise(More)
In response to acute physiological stress, the sympathetic nervous system modifies neural outflow through increased firing frequency of lower-threshold axons, recruitment of latent subpopulations of higher-threshold axons, and/or acute modifications of synaptic delays. Aging and coronary artery disease (CAD) often modify efferent muscle sympathetic nerve(More)
Sympathetic outflow is modified during acute homeostatic stress through increased firing of low-threshold axons, recruitment of latent axons, and synaptic delay modifications. However, the role of central mechanisms versus peripheral reflex control over sympathetic recruitment remains unknown. Here, we examined sympathetic discharge patterns during(More)
Dysregulation of autonomic control often develops with advancing age, favoring a chronic state of heightened sympathetic outflow with parasympathetic withdrawal. However, the mechanisms of this age-related autonomic impairment are not known. This study tested the hypothesis that inter-individual differences in autonomic outflow across the adult age-span are(More)
This study investigated the influence of ventilation on sympathetic action potential (AP) discharge patterns during varying levels of high chemoreflex stress. In seven trained breath-hold divers (33±12 yrs), we measured muscle sympathetic nerve activity (MSNA) at baseline, during preparatory rebreathing (RBR), and during i) functional residual capacity(More)