Mark A. Zern

Learn More
BACKGROUND & AIMS Our previous studies showed that CD133, EpCAM, and aldehyde dehydrogenase (ALDH) are useful markers to identify cancer stem cells (CSCs) in hepatocellular carcinoma (HCC) tissues. The present study aims to evaluate chemosensitivity and invasion capability of HCC based on CSC marker profiles, and to explore the underlying molecular(More)
Human embryonic stem cells (hESC) may provide a cell source for functional hepatocytes. The aim of this study is to establish a viable human hepatocyte-like cell line from hESC that can be used for cell-based therapies. The differentiated hESC were enriched by transducing with a lentivirus vector containing the green fluorescent protein (GFP) gene driven by(More)
One of several postulated roles for tissue transglutaminase (tTG) is the stabilization and assembly of extracellular matrix via peptide cross-linking. We previously determined that tTG activity increased in an animal model of hepatic fibrogenesis and in human liver disease. To further study the role of tTG in liver disease, we initiated investigations into(More)
BACKGROUND & AIMS The availability of in vitro expandable human hepatocytes would greatly advance liver-directed cell therapies. Therefore, we examined whether human fetal hepatocytes are amenable to telomerase-mediated immortalization without inducing a transformed phenotype and disrupting their differentiation potential. Telomerase is a ribonucleoprotein(More)
The sensitive telomeric repeat amplification protocol (TRAP) permits telomerase detection in mammalian cell and tissue extracts with very low telomerase activity levels. Unfortunately, conventional TRAP assays require complex post-amplification procedures, such as polyacrylamide gel electrophoresis and densitometry, to measure telomerase products.(More)
This study was undertaken to delineate a possible role for tissue transglutaminase (tTG), an enzyme that catalyzes protein cross-linking, in hepatic fibrogenesis. Rats were treated with CCl4 solution and then killed at different stages of liver injury and fibrogenesis. Liver tTG mRNA levels were markedly increased as early as 6 h after the first injection,(More)
Despite extensive efforts, little progress has been made in identifying the factors that induce hepatic fibrosis. Transforming growth factor-beta (TGF-beta) has been shown to enhance collagen production, therefore its role in hepatic fibrosis was investigated. Treatment of cultured hepatic cells with TGF-beta 1 increased type I procollagen mRNA levels(More)
Collagen is the predominant component of the extracellular matrix of the heart, where it is organized in a hierarchy of structures. To establish the cellular origin of the various collagen types, type I-procollagen alpha 2 chain and types III and IV collagen mRNAs were examined in preparations of myocytes and non-myocyte heart cells freshly isolated from(More)
Hepatic fibrosis is a wound-healing process that occurs when the liver is injured chronically. Hepatic stellate cells (HSC) are responsible for the excess production of extracellular matrix (ECM) components. The activation of HSC, a key issue in the pathogenesis of hepatic fibrosis, is mediated by various cytokines and reactive oxygen species released from(More)
Activation of hepatic stellate cells (HSC) results in their proliferation and in the secretion of extracellular matrix (ECM) proteins, which leads to hepatic fibrosis. microRNAs (miRNAs) have been shown to regulate various cell functions, such as proliferation, differentiation, and apoptosis. Hence, we have analyzed the miRNAs that were differentially(More)