Mark A. Shannon

Learn More
One of the most pervasive problems afflicting people throughout the world is inadequate access to clean water and sanitation. Problems with water are expected to grow worse in the coming decades, with water scarcity occurring globally, even in regions currently considered water-rich. Addressing these problems calls out for a tremendous amount of research to(More)
We report fabrication and use of a flexible array of nano-apertures for photolithography on curved surfaces. The batch-fabricated apertures are formed of metal-coated silicone tips. The apertures are formed at the end of the silicone tips by either electrochemical etching of the metal or plasma etching of a protective mask followed by wet chemical etching.(More)
Integrating multiple analytical processes into microfluidic devices is an important research area required for a variety of microchip-based analyses. A microfluidic system is described that achieves preparative separations by intelligent fraction collection of attomole quantities of sample. The device consists of a main microfluidic channel used to perform(More)
The extension of microfluidic devices to include three-dimensional fluidic networks allows complex fluidic and chemical manipulations but requires innovative methods to interface fluidic layers. Externally controllable interconnects, employing nuclear track-etched polycarbonate membranes containing nanometer-diameter capillaries, are described that produce(More)
When etching high-aspect-ratio silicon features using deep reactive ion etching DRIE , researchers find that there is a maximum achievable aspect ratio, which we define as the critical aspect ratio, of an etched silicon trench using a DRIE process. At this critical aspect ratio, the apparent etch rate defined as the total depth etched divided by the total(More)
The design and fabrication of a multilayered polymer micro-nanofluidic chip is described that consists of poly(methylmethacrylate) (PMMA) layers that contain microfluidic channels separated in the vertical direction by polycarbonate (PC) membranes that incorporate an array of nanometre diameter cylindrical pores. The materials are optically transparent to(More)
This paper demonstrates a chemical surface modification method for covalent attachment of various polymers by using silane-based "click" chemistry on silica surfaces and within glass microchannels suitable for CE systems. Modified surfaces are characterized by contact angle measurements, X-ray photoelectron spectroscopy, and Fourier transform(More)
Due to the numerous toxicological effects of lead, its presence in the environment needs to be effectively monitored. Incorporating a biosensing element within a microfluidic platform enables rapid and reliable determinations of lead at trace levels. A microchip-based lead sensor is described here that employs a lead-specific DNAzyme (also called catalytic(More)
We present a novel microfabrication process for realizing a new type of flexible sensory "smart skin". In this work, we focus on demonstration of a skin containing a two dimensional array of tactile sensors using polyimide and metal strain gauges. A novel polymer microfabrication approach coupled with surface release methods is demonstrated. The process(More)