Mark A. Schenerman

Learn More
Escherichia coli FimH adhesin mediates binding to the bladder mucosa. In mice, a FimH vaccine protects against bacterial challenge. In this study, 4 monkeys were inoculated with 100 microgram of FimCH adhesin-chaperone complex mixed with MF59 adjuvant, and 4 monkeys were given adjuvant only intramuscularly. After 2 doses (day 0 and week 4), a booster at 48(More)
PicoGreen is a fluorescent probe that binds dsDNA and forms a highly luminescent complex when compared to the free dye in solution. This unique probe is widely used in DNA quantitation assays but has limited application in biophysical analysis of DNA and DNA-protein systems due to limited knowledge pertaining to its physical properties and characteristics(More)
Adequate biophysical characterization of influenza virions is important for vaccine development. The influenza virus vaccines are produced from the allantoic fluid of developing chicken embryos. The process of viral replication produces a heterogeneous mixture of infectious and non-infectious viral particles with varying states of aggregation. The study of(More)
The Fc (crystallizable fragment) region of therapeutic antibodies can have an important role in their safety and efficacy. Although much is known about the structure-activity relationship of antibodies and the factors that influence Fc effector functions, a process has not yet been defined to clearly delineate how Fc functionality should be assessed and(More)
PicoGreen (PG) is a fluorescent probe for both double-stranded DNA (dsDNA) detection and quantification based on its ability to form a luminescent complex with dsDNA as compared with the free dye in solution. To expand the sensitivity of PG detection, we have studied the spectral properties of PG, both free and in complex with DNA in solution, when the(More)
We have identified a single tryptophan (Trp) residue responsible for loss of binding and biological activity upon ultraviolet (UV) light irradiation in MEDI-493, a humanized monoclonal antibody (MAb) against respiratory syncytial virus (RSV). This finding provides a better understanding of structure-function relationship in a 150-kDa protein. Irradiation of(More)
Biochemical and functional testing of a humanized monoclonal antibody directed against Respiratory Syncytial Virus (Synagis) has been performed to evaluate cell line stability, support process validation, and to demonstrate "comparability" during the course of process development. Using a variety of analytical methods, product manufactured at different(More)
A method using a combination of asymmetric flow field-flow fractionation (AFFFF) and multiangle light scattering (MALS) techniques has been shown to improve the estimation of virus particle counts and the amount of aggregated virus in laboratory samples. The method is based on the spherical particle counting approach given by Wyatt and Weida in 2004, with(More)
level: interMediate C osponsored by CASSS (an International Separation Science Society) and the US FDA, the 17th CMC Strategy Forum was designed to explore the relationships between higher-order molecular structure and quality of therapeutic proteins and peptides, vaccines, and blood-derived products. Understanding those relationships is important to(More)
A novel, nonreducible thioether bridge between the light and heavy chains of different IgG1 monoclonal antibodies has been characterized. An additional band with an apparent molecular weight of 92 kDa was detected when monoclonal antibodies were analyzed by reducing capillary gel electrophoresis (rCGE) and reducing SDS-PAGE. To further investigate this(More)