Learn More
The three-dimensional structure of the human histocompatibility antigen HLA-A2 was determined at 3.5 A resolution by a combination of isomorphous replacement and iterative real-space averaging of two crystal forms. The monoclinic crystal form has now been refined by least-squares methods to an R-factor of 0.169 for data from 6 to 2.6 A resolution. A(More)
Most of the polymorphic amino acids of the class I histocompatibility antigen, HLA-A2, are clustered on top of the molecule in a large groove identified as the recognition site for processed foreign antigens. Many residues critical for T-cell recognition of HLA are located in this site, in positions allowing them to serve as ligands to processed antigens.(More)
The class I histocompatibility antigen from human cell membranes has two structural motifs: the membrane-proximal end of the glycoprotein contains two domains with immunoglobulin-folds that are paired in a novel manner, and the region distal from the membrane is a platform of eight antiparallel beta-strands topped by alpha-helices. A large groove between(More)
Class II and class I histocompatibility molecules allow T cells to recognize 'processed' polypeptide antigens. The two polypeptide chains of class II molecules, alpha and beta, are each composed of two domains (for review see ref. 6); the N-terminal domains of each, alpha 1 and beta 1, are highly polymorphic and appear responsible for binding peptides at(More)
Structural, biochemical, and genetic techniques were applied to investigate the function of FtsJ, a recently identified heat shock protein. FtsJ is well conserved, from bacteria to humans. The 1.5 A crystal structure of FtsJ in complex with its cofactor S-adenosylmethionine revealed that FtsJ has a methyltransferase fold. The molecular surface of FtsJ(More)
The three-dimensional structure of the native unliganded form of the Leu/Ile/Val-binding protein (Mr = 36,700), an essential component of the high-affinity active transport system for the branched aliphatic amino acids in Escherichia coli, has been determined and further refined to a crystallographic R-factor of 0.17 at 2.4 A resolution. The entire(More)
We have determined the structure of a second human histocompatibility glycoprotein, HLA-Aw68, by X-ray crystallography and refined it to a resolution of 2.6 A. Overall, the structure is extremely similar to that of HLA-A2 (refs 1, 2; and M.A.S. et al., manuscript in preparation), although the 11 amino-acid substitutions at polymorphic residues in the(More)
Escherichia coli produces polysaccharide capsules that, based on their mechanisms of synthesis and assembly, have been classified into four groups. The group 4 capsule (G4C) polysaccharide is frequently identical to that of the cognate lipopolysaccharide O side chain and has, therefore, also been termed the O-antigen capsule. The genes involved in the(More)
Cdc25 phosphatases activate the cell division kinases throughout the cell cycle. The 2.3 A structure of the human Cdc25A catalytic domain reveals a small alpha/beta domain with a fold unlike previously described phosphatase structures but identical to rhodanese, a sulfur-transfer protein. Only the active-site loop, containing the Cys-(X)5-Arg motif, shows(More)