Learn More
The design, implementation, and evaluation of a miniature biped robot for urban reconnaissance are presented. Design specifications for mobility, space requirement, weight, sensing, and control are defined. A revolute hip joint is selected based on its enhanced mobility and capability to function in reasonably confined spaces. Small size dictates minimal(More)
In comparison to wheeled robots, spherical mobile robots offer greater mobility, stability, and scope for operation in hazardous environments. Inspite of these advantages, spherical designs have failed to gain popularity due to complexity of their motion planning and control problems. In this paper, we address the motion planning problem for the rolling(More)
Four different methods of hand prosthesis control are developed and examined experimentally. Open-loop control is shown to offer the least sensitivity when manipulating objects. Force feedback substantially improves upon open-loop control. However, it is shown that the inclusion of velocity and/or position feedback in a hybrid force-velocity control scheme(More)
This paper describes development of a wind display system for the TreadPort virtual environment locomotion interface, which is cumulatively known as the TreadPort Active Wind Tunnel (TPAWT). Computational Fluid Dynamic simulations and experiments with a scaled model test-bed of the system has resulted in a combination of passive and active controls capable(More)
This research focuses on development of a haptic system to create controlled air flow acting on a user in the Treadport virtual environment. The Treadport active wind tunnel (TPAWT) is thus created in order to produce air flow patterns that allow a variety of wind angles and speeds to be felt by the user. In order to control this system in real-time, the(More)
This paper presents a time invariant kinematic motion controller for wheeled mobile robots. Actuator capability, mechanical design, and traction forces governed by terrain features provide velocity and curvature limitations that are used in the design of the controller. A novel path manifold that considers curvature limitations is introduced to provide a(More)
This research creates a steady headwind at a user position in the scaled Treadport Active Wind Tunnel (TPAWT). The TPAWT adds a wind display system to the previously developed Treadport virtual environment, and this research builds upon prior work to provide improved control of headwind angle at the user position. Key to this research is the addition of a(More)
Flying robots capable of perch-and-stare are desirable for reconnaissance missions. Current solutions for perch-and-stare applications utilize various methods to create an aircraft that can land on a limited set of surfaces that are typically horizontal or vertical planes. This paper presents a bio-inspired concept that allows for passive perching on(More)