Learn More
In comparison to wheeled robots, spherical mobile robots offer greater mobility, stability, and scope for operation in hazardous environments. Inspite of these advantages, spherical designs have failed to gain popularity due to complexity of their motion planning and control problems. In this paper, we address the motion planning problem for the rolling(More)
The design, implementation, and evaluation of a miniature biped robot for urban reconnaissance are presented. Design specifications for mobility, space requirement, weight, sensing, and control are defined. A revolute hip joint is selected based on its enhanced mobility and capability to function in reasonably confined spaces. Small size dictates minimal(More)
Four different methods of hand prosthesis control are developed and examined experimentally. Open-loop control is shown to offer the least sensitivity when manipulating objects. Force feedback substantially improves upon open-loop control. However, it is shown that the inclusion of velocity and/or position feedback in a hybrid force-velocity control scheme(More)
This paper presents a time invariant kinematic motion controller for wheeled mobile robots. Actuator capability, mechanical design, and traction forces governed by terrain features provide velocity and curvature limitations that are used in the design of the controller. A novel path manifold that considers curvature limitations is introduced to provide a(More)
The subject of this paper is the design, control, and evaluation of a biped–climbing robot featuring a new hybrid hip joint. The hybrid hip provides both prismatic and revolute motion, discretely, to the robot, using a single actuator. This is intended to improve its adaptability in confined environments and its capability to maneuver over and around(More)