Mark A Krasnow

Learn More
The molecular basis for patterning of complex organ structures like the lung and insect tracheal system is unknown. Here, we describe the Drosophila gene branchless (bnl) and demonstrate that it is a key determinant of the tracheal branching pattern. bnl is required for tracheal branching and is expressed dynamically in clusters of cells surrounding the(More)
Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene(More)
Antagonists of several growth factor signaling pathways play important roles in developmental patterning by limiting the range of the cognate inducer. Here, we describe an antagonist of FGF signaling that patterns apical branching of the Drosophila airways. In wild-type embryos, the Branchless FGF induces secondary branching by activating the Breathless FGF(More)
The Drosophila sprouty gene encodes an antagonist of FGF and EGF signaling whose expression is induced by the signaling pathways that it inhibits. Here we describe a family of vertebrate Sprouty homologs and demonstrate that the regulatory relationship with FGF pathways has been conserved. In both mouse and chick embryos, Sprouty genes are expressed in(More)
The tracheal (respiratory) system of Drosophila melanogaster is a branched network of epithelial tubes that ramifies throughout the body and transports oxygen to the tissues. It forms by a series of sequential branching events in each hemisegment from T2 to A8. Here we present a cellular and initial genetic analysis of the branching process. We show that(More)
The mammalian lung is a highly branched network in which the distal regions of the bronchial tree transform during development into a densely packed honeycomb of alveolar air sacs that mediate gas exchange. Although this transformation has been studied by marker expression analysis and fate-mapping, the mechanisms that control the progression of lung(More)
We show that a vascular endothelial growth factor (VEGF) pathway controls embryonic migrations of blood cells (hemocytes) in Drosophila. The VEGF receptor homolog is expressed in hemocytes, and three VEGF homologs are expressed along hemocyte migration routes. A receptor mutation arrests progression of blood cell movement. Mutations in Vegf17E or Vegf27Cb(More)
Mammalian lungs are branched networks containing thousands to millions of airways arrayed in intricate patterns that are crucial for respiration. How such trees are generated during development, and how the developmental patterning information is encoded, have long fascinated biologists and mathematicians. However, models have been limited by a lack of(More)
During development of tubular networks such as the mammalian vascular system, the kidney and the Drosophila tracheal system, epithelial tubes must fuse to each other to form a continuous network. Little is known of the cellular mechanisms or molecular control of epithelial tube fusion. We describe the cellular dynamics of a tracheal fusion event in(More)
The Drosophila tracheal (respiratory) system is a tubular epithelial network that delivers oxygen to internal tissues. Sprouting of the major tracheal branches is stereotyped and controlled by hard-wired developmental cues. Here we show that ramification of the fine terminal branches is variable and regulated by oxygen, and that this process is controlled(More)