Mark A. Hauser

Learn More
The chemokine receptor CCR7 is essential for lymphocyte and dendritic cell homing to secondary lymphoid organs. Owing to the ability to induce directional migration, CCR7 and its ligands CCL19 and CCL21 are pivotal for the regulation of the immune system. Here, we identify a novel function for receptor ubiquitylation in the regulation of the trafficking(More)
The homeostatic chemokines CCL19 and CCL21 and their common cognate chemokine receptor CCR7 orchestrate immune cell trafficking by eliciting distinct signaling pathways. Here, we demonstrate that human CCR7 is N-glycosylated on 2 specific residues in the N terminus and the third extracellular loop. Conceptually, CCR7 glycosylation adds steric hindrance to(More)
Chemokines are pivotal regulators of cell migration during continuous immune surveillance, inflammation, homeostasis, and development. Chemokine binding to their 7-transmembrane domain, G-protein-coupled receptors causes conformational changes that elicit intracellular signaling pathways to acquire and maintain an asymmetric architectural organization and a(More)
Lymphocyte homing to, and motility within, lymph nodes is regulated by the chemokine receptor CCR7 and its two ligands CCL19 and CCL21. There, lymphocytes are exposed to a number of extracellular stimuli that influence cellular functions and determine the cell fate. In this study, we assessed the effect of TCR engagement on CCR7-mediated cell migration. We(More)
Host defense depends on orchestrated cell migration guided by chemokines that elicit selective but biased signaling pathways to control chemotaxis. Here, we showed that different inflammatory stimuli provoked oligomerization of the chemokine receptor CCR7, enabling human dendritic cells and T cell subpopulations to process guidance cues not only through(More)
We currently lack a broader mechanistic understanding of the integration of the early secretory pathway with other homeostatic processes such as cell growth. Here, we explore the possibility that Sec16A, a major constituent of endoplasmic reticulum exit sites (ERES), acts as an integrator of growth factor signaling. Surprisingly, we find that Sec16A is a(More)
The CC-chemokine receptor 7 (CCR7) coordinates the migration of cancer cells as well as immune cells towards lymphatic organs where its two ligands CCL19 and CCL21 are constitutively expressed. Here we provide a topological model of CCR7, which belongs to the class A of G-protein coupled, seven-transmembrane spanning receptors, and describe how CCR7(More)
To facilitate recombination-based screening, we constructed the ColE1-based plasmid, pi G4, that confers chloramphenicol resistance, contains a polylinker with multiple unique restriction enzyme recognition sequences, and contains the genetic marker, supF. To facilitate recombination-based screening followed by rapid DNA sequencing, we inserted the(More)
To identify transcribed sequences rapidly and efficiently, we have developed a recombination-based assay to screen bacteriophage lambda libraries for sequences that share homology with a given probe. This strategy determines analytically whether a given probe is transcribed in a given tissue at a given time of development, and may also be used to isolate(More)
The hormone glucagon stimulates hepatic gluconeogenesis. Studies on the mechanism of this stimulation have centered upon those changes manifested in the hepatic mitochondria after the hormonal treatment [l-5] . Recently, acute glucagon treatment of fed, intact rats has been shown to produce a stimulation of respiration with a number of substrates in(More)