Mark A. Hauser

Learn More
Lymphocyte homing to, and motility within, lymph nodes is regulated by the chemokine receptor CCR7 and its two ligands CCL19 and CCL21. There, lymphocytes are exposed to a number of extracellular stimuli that influence cellular functions and determine the cell fate. In this study, we assessed the effect of TCR engagement on CCR7-mediated cell migration. We(More)
The chemokine receptor CCR7 is essential for lymphocyte and dendritic cell homing to secondary lymphoid organs. Owing to the ability to induce directional migration, CCR7 and its ligands CCL19 and CCL21 are pivotal for the regulation of the immune system. Here, we identify a novel function for receptor ubiquitylation in the regulation of the trafficking(More)
We currently lack a broader mechanistic understanding of the integration of the early secretory pathway with other homeostatic processes such as cell growth. Here, we explore the possibility that Sec16A, a major constituent of endoplasmic reticulum exit sites (ERES), acts as an integrator of growth factor signaling. Surprisingly, we find that Sec16A is a(More)
Host defense depends on orchestrated cell migration guided by chemokines that elicit selective but biased signaling pathways to control chemotaxis. Here, we showed that different inflammatory stimuli provoked oligomerization of the chemokine receptor CCR7, enabling human dendritic cells and T cell subpopulations to process guidance cues not only through(More)
Intravital imaging has revealed that T cells change their migratory behavior during physiological activation inside lymphoid tissue. Yet, it remains less well investigated how the intrinsic migratory capacity of activated T cells is regulated by chemokine receptor levels or other regulatory elements. Here, we used an adjuvant-driven inflammation model to(More)
Citation: Ackerknecht M, Hauser MA, Legler DF and Stein JV (2015) In vivo TCR signaling in CD4 + T cells imprints a cell-intrinsic, transient low-motility pattern independent of chemokine receptor expression levels, or microtubular network, integrin, and protein kinase C activity. Intravital imaging has revealed that T cells change their migratory behavior(More)
  • 1