Learn More
More than twelve years have elapsed since the first public release of WEKA. In that time, the software has been rewritten entirely from scratch, evolved substantially and now accompanies a text on data mining [35]. These days, WEKA enjoys widespread acceptance in both academia and business, has an active community, and has been downloaded more than 1.4(More)
Algorithms for feature selection fall into two broad categories: wrappers that use the learning algorithm itself to evaluate the usefulness of features and filters that evaluate features according to heuristics based on general characteristics of the data. For application to large databases, filters have proven to be more practical than wrappers because(More)
Tree induction methods and linear models are popular techniques for supervised learning tasks, both for the prediction of nominal classes and continuous numeric values. For predicting numeric quantities , there has been work on combining these two schemes into 'model trees', i.e. trees that contain linear regression functions at the leaves. In this paper,(More)
Data engineering is generally considered to be a central issue in the development of data mining applications. The success of many learning schemes, in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the model(More)
Machine learning methods for classification problems commonly assume that the class values are unordered. However, in many practical applications the class values do exhibit a natural order—for example, when learning how to grade. The standard approach to ordinal classification converts the class value into a numeric quantity and applies a regression(More)
UNLABELLED The Weka machine learning workbench provides a general-purpose environment for automatic classification, regression, clustering and feature selection-common data mining problems in bioinformatics research. It contains an extensive collection of machine learning algorithms and data pre-processing methods complemented by graphical user interfaces(More)
Packet header traces are widely used in network analysis. Header traces are the aggregate of traffic from many concurrent applications. We present a methodology, based on machine learning, that can break the trace down into clusters of traffic where each cluster has different traffic characteristics. Typical clusters include bulk transfer, single and(More)
Machine learning algorithms automatically extract knowledge from machine readable information. Unfortunately, their success is usually dependant on the quality of the data that they operate on. If the data is inadequate, or contains extraneous and irrelevant information, machine learning algorithms may produce less accurate and less understandable results,(More)