Mark A. Greenough

Learn More
Alzheimer's Disease (AD) is complicated by pro-oxidant intraneuronal Fe(2+) elevation as well as extracellular Zn(2+) accumulation within amyloid plaque. We found that the AD β-amyloid protein precursor (APP) possesses ferroxidase activity mediated by a conserved H-ferritin-like active site, which is inhibited specifically by Zn(2+). Like ceruloplasmin, APP(More)
Alzheimer's disease is the leading cause of dementia in the elderly and is defined by two pathological hallmarks; the accumulation of aggregated amyloid beta and excessively phosphorylated Tau proteins. The etiology of Alzheimer's disease progression is still debated, however, increased oxidative stress is an early and sustained event that underlies much of(More)
MNK (Menkes copper-translocating P-type ATPase, or the Menkes protein; ATP7A) plays a key role in regulating copper homoeostasis in humans. MNK has been shown to have a dual role in the cell: it delivers copper to cuproenzymes in the Golgi compartment and effluxes excess copper from the cell. These roles can be achieved through copper-regulated trafficking(More)
Impaired metal ion homeostasis causes synaptic dysfunction and treatments for Alzheimer's disease (AD) that target metal ions have therefore been developed. The leading compound in this class of therapeutic, PBT2, improved cognition in a clinical trial with AD patients. The aim of the present study was to examine the cellular mechanism of action for PBT2.(More)
BACKGROUND/AIMS The copper transporting ATPases, Menkes (ATP7A; MNK) and Wilson (ATP7B; WND) are essential for normal copper transport in the human body. The placenta is the key organ in copper supply to the fetus during pregnancy and it is one of the few organs in the body to express both of the ATPases. The placenta therefore provides a unique opportunity(More)
A role for the copper transporter, ATP7B, in secretion of copper from the human breast into milk has previously not been reported, although it is known that the murine ortholog of ATP7B facilitates copper secretion in the mouse mammary gland. We show here that ATP7B is expressed in luminal epithelial cells in both the resting and lactating human breast,(More)
Dyshomeostasis of extracellular zinc and copper has been implicated in β-amyloid aggregation, the major pathology associated with Alzheimer disease. Presenilin mediates the proteolytic cleavage of the β-amyloid precursor protein to release β-amyloid, and mutations in presenilin can cause familial Alzheimer disease. We tested whether presenilin expression(More)
Copper is critical for the Central Nervous System (CNS) development and function. In particular, different studies have shown the effect of copper at brain synapses, where it inhibits Long Term Potentation (LTP) and receptor pharmacology. Paradoxically, according to recent studies copper is required for a normal LTP response. Copper is released at the(More)
Neurodegenerative illnesses are characterized by aberrant metabolism of biometals such as copper (Cu), zinc (Zn) and iron (Fe). However, little is known about the metabolic effects associated with altered metal homeostasis. In this study, we used an in vitro model of altered Cu homeostasis to investigate how Cu regulates cellular protein expression. Human(More)
Copper deficiency during pregnancy results in early embryonic death and foetal structural abnormalities including skeletal, pulmonary and cardiovascular defects. During pregnancy, copper is transported from the maternal circulation to the foetus by mechanisms which have not been clearly elucidated. Two copper-transporting ATPases, Menkes (ATP7A; MNK) and(More)