Mark A. Gerber

Learn More
Chronic exposure to drugs of abuse or stress regulates transcription factors, chromatin-modifying enzymes and histone post-translational modifications in discrete brain regions. Given the promiscuity of the enzymes involved, it has not yet been possible to obtain direct causal evidence to implicate the regulation of transcription and consequent behavioral(More)
The Rtf1 subunit of the Paf1 complex is required for proper monoubiquitination of histone H2B and methylation of histone H3 on lysines 4 (H3K4) and 79 in yeast Saccharomyces cerevisiae. Using RNAi, we examined the role of Rtf1 in histone methylation and gene expression in Drosophila melanogaster. We show that Drosophila Rtf1 (dRtf1) is required for proper(More)
mRNA synthesis in eukaryotic organisms is a key biological process that is regulated at multiple levels. From the covalent modifications of chromatin by a number of chromatin remodeling complexes during the initiation and activation steps of transcription to the processing of mRNA transcripts, a very large consortium of proteins and multiprotein complexes(More)
Meningiomas are the second most common brain tumor in adults, yet comparatively little is presently known about the dysregulated growth control pathways involved in their formation and progression. One of the most frequently observed genetic changes in benign meningioma involves loss of protein 4.1B expression. Previous studies from our laboratory have(More)
A number of transcription factors that increase the catalytic rate of mRNA synthesis by RNA polymerase II (Pol II) have been purified from higher eukaryotes. Among these are the ELL family, DSIF, and the heterotrimeric elongin complex. Elongin A, the largest subunit of the elongin complex, is the transcriptionally active subunit, while the smaller elongin B(More)
The elongation stage of transcription by RNA polymerase II (Pol II) has emerged as an essential regulated step. Elongin A (EloA) is the largest subunit of the Elongin complex that can increase the catalytic rate of mRNA synthesis by Pol II. We recently demonstrated that the Elongin A homologue in Drosophila, dEloA, is essential and has properties consistent(More)
Meningiomas are common central nervous system tumors; however, the molecular mechanisms underlying their pathogenesis are largely undefined. Previous work has implicated Protein 4.1B as an important tumor suppressor involved in the development of these neoplasms. In this report, we demonstrate that the U2 domain is necessary and sufficient for the ability(More)
Several eukaryotic proteins increase RNA polymerase II (Pol II) transcription rates in vitro. The relative contributions of these factors to gene expression in vivo is unknown. The ELL family of proteins promote Pol II elongation in vitro, and the Drosophila ELL homolog (dELL) is associated with Pol II at sites of transcription in vivo. The purpose of this(More)
Artificial transcription factors are powerful tools for regulating gene expression. Here we report results with engineered zinc-finger transcription factors (ZF-TFs) targeting four protein-coding genes, OCT4, SOX2, KLF4 and c-MYC, and one noncoding ribonucleic acid (RNA) gene, the microRNA (miRNA) miR302/367 cluster. We designed over 300 ZF-TFs whose(More)
The ELL family of proteins function in vitro as elongation factors for RNA polymerase II. Deletion studies have defined domains in mammalian ELL required for transcription elongation activity and RNA polymerase binding in vitro, for transformation of cultured cells when overexpressed, and for leukemogenesis and cell proliferation as part of a leukemic(More)