Learn More
A common question asked by users of direct search algorithms is how to use derivative information at iterates where it is available. This paper addresses that question with respect to Generalized Pattern Search (GPS) methods for unconstrained and linearly constrained optimization. Specifically this paper concentrates on the GPS poll step. Polling is done to(More)
A previous analysis of second-order behavior of generalized pattern search algorithms for unconstrained and linearly constrained minimization is extended to the more general class of mesh adaptive direct search (MADS) algorithms for general constrained optimization. Because of the ability of MADS to generate an asymptotically dense set of search directions,(More)
In previous work, the generalized pattern search (GPS) algorithm for linearly constrained (continuous) optimization was extended to mixed variable problems, in which some of the variables may be categorical. In another paper, the mesh adaptive direct search (MADS) algorithm was introduced as a generalization of GPS for problems with general nonlinear(More)
This paper describes the optimization of a load-bearing thermal insulation system characterized by hot and cold surfaces with a series of heat intercepts and insulators between them. The optimization problem is represented as a mixed variable programming (MVP) problem with nonlinear constraints, in which the objective is to minimize the power required to(More)
The purpose of this paper is to introduce a new way of choosing directions for the Mesh Adaptive Direct Search (MADS) class of algorithms. The advantages of this new ORTHOMADS instantiation of MADS are that the polling directions are chosen deterministically, ensuring that the results of a given run are repeatable, and that they are orthogonal to each(More)
Previous analyses of pattern search algorithms for unconstrained and linearly constrained minimization have focused on proving convergence of a subsequence of iterates to a limit point satisfying either directional or first-order necessary conditions for optimality, depending on the smoothness of the objective function in a neighborhood of the limit point.(More)
A new class of algorithms for solving nonlinearly constrained mixed variable optimization problems is presented. This class combines and extends the Audet-Dennis Generalized Pattern Search (GPS) algorithms for bound constrained mixed variable optimization, and their GPS-filter algorithms for general nonlinear constraints. In generalizing existing(More)