Learn More
Evolution may depend more strongly on variation in gene expression than on differences between variant forms of proteins. Regions of DNA that affect gene expression are highly variable, containing 0.6% polymorphic sites. These naturally occurring polymorphic nucleotides can alter in vivo transcription rates. Thus, one might expect substantial variation in(More)
A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an extensive body of work examining the adaptive responses of Fundulus species to(More)
BACKGROUND Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in(More)
BACKGROUND Populations of the teleost fish Fundulus heteroclitus appear to flourish in heavily polluted and geographically separated Superfund sites. Populations from three Superfund sites (New Bedford Harbor, MA, Newark Bay, NJ, and Elizabeth River, VA) have independently evolved adaptive resistance to chemical pollutants. In these polluted populations,(More)
A common geographical pattern of genetic variation is the one-dimensional cline. Clines may be maintained by diversifying selection across a geographical gradient but can also reflect historical processes such as allopatry followed by secondary contact. To identify loci that may be undergoing diversifying selection, we examined the distribution of(More)
How much variation is there in gene expression? How is this variation partitioned within and among populations? How much variation is biologically important? That is, how much of this variation affects longevity, reproductive fitness, or probability of survival? Microarray analyses can be used to accurately quantify the expression of most, if not all, genes(More)
We examine the interaction between phenotypic plasticity and evolutionary adaptation using muscle gene expression levels among populations of the fish Fundulus heteroclitus acclimated to three temperatures. Our analysis reveals shared patterns of phenotypic plasticity due to thermal acclimation as well as non-neutral patterns of variation among populations(More)
What is the effect of a variable environment on phenotypic variation? Does the physiological response to a new environment increase or decrease the differences among individuals? We provide a speculative hypothesis suggesting that the induction of a physiological response to environmental change minimizes phenotypic differences among individuals in outbred(More)
Individual variation in gene expression is important for evolutionary adaptation and susceptibility to diseases and pathologies. In this study, we address the functional importance of this variation by comparing cardiac metabolism to patterns of mRNA expression using microarrays. There is extensive variation in both cardiac metabolism and the expression of(More)
The screening of liver and heart cDNA libraries from the teleost Fundulus heteroclitus with degenerate oligonucleotide probes to conserved alpha-helical regions in mammalian P450s resulted in the identification of two cDNAs that together represent a novel P450 subfamily, the CYP2Ns. Northern analysis demonstrated that CYP2N1 transcripts are most abundant in(More)