Marjolaine Ngollo

Learn More
AIM The isoflavones genistein, daidzein and equol (daidzein metabolite) have been reported to interact with epigenetic modifications, specifically hypermethylation of tumor suppressor genes. The objective of this study was to analyze and understand the mechanisms by which phytoestrogens act on chromatin in breast cancer cell lines. MATERIALS & METHODS Two(More)
Major phytoestrogens genistein and daidzein have been reported to have the ability to reverse DNA methylation in cancer cell lines. The mechanism by which genistein and daidzein have an inhibiting action on DNA methylation is not well understood. The aim of this study was to investigate the effects of soy phytoestrogens and the natural estrogen(More)
H3K27me3 histone marks shape the inhibition of gene transcription. In prostate cancer, the deregulation of H3K27me3 marks might play a role in prostate tumor progression. We investigated genome-wide H3K27me3 histone methylation profile using chromatin immunoprecipitation (ChIP) and 2X400K promoter microarrays to identify differentially-enriched regions in(More)
AIM Here, we investigated how the St Gallen breast molecular subtypes displayed distinct histone H3 profiles. PATIENTS & METHODS 192 breast tumors divided into five St Gallen molecular subtypes (luminal A, luminal B HER2-, luminal B HER2+, HER2+ and basal-like) were evaluated for their histone H3 modifications on gene promoters. RESULTS ANOVA analysis(More)
BACKGROUND/AIM Numerous studies have shown that breast cancer and epigenetic mechanisms have a very powerful interactive relation. The MCF7 cell line, representative of luminal subtype and the MDA-MB 231 cell line representative of mesenchymal-like subtype were treated respectively with a Histone Methyl Transferase Inhibitors (HMTi), 3-Deazaneplanocin(More)
Acetylation is a major modification that is required for gene regulation, genome maintenance and metabolism. A dysfunctional acetylation plays an important role in several diseases, including cancer. A group of enzymes-lysine acetyltransferases are responsible for this modification and act in regulation of transcription as cofactors and by acetylation of(More)
Prostate cancer is the most common cancer in men and the second leading cause of cancer deaths in men in France. Apart from the genetic alterations in prostate cancer, epigenetics modifications are involved in the development and progression of this disease. Epigenetic events are the main cause in gene regulation and the three most epigenetic mechanisms(More)
DNA and histone methylation are both modifications closely link to stable repression. However, previous studies have shown that methylation repression by EZH2 could be an independent epigenetic mechanism of DNA methylation [1]. EZH2 protein and H3K27me3 marks appear to favor the development of prostate cancer by modulating gene expression. These data(More)