Mariya Ptashnyk

Learn More
In this paper we derive a model for the diffusion of strongly sorbed solutes in soil taking into account diffusion within both the soil fluid phase and the soil particles. The model takes into account the effect of solutes being bound to soil particle surfaces by a reversible nonlinear reaction. Effective macroscale equations for the solute movement in the(More)
Hairy roots are plants genetically transformed by Agrobacterium rhizogenes, which do not produce shoots and are composed mainly by roots. Hairy roots of Ophiorrhiza mungos Linn. are currently gaining interest of pharmacologists, since a secondary product of their metabolism, camptothecin, is used in chemotherapy. To optimize the production of valuable(More)
Water flow in plant tissues takes place in two different physical domains separated by semiper-meable membranes: cell insides and cell walls. The assembly of all cell insides and cell walls are termed symplast and apoplast, respectively. Water transport is pressure driven in both, where osmosis plays an essential role in membrane crossing. In this paper, a(More)
Combining different theoretical approaches, curvature modulated sorting in lipid bilayers fixed on non-planar surfaces is investigated. First, we present a continuous model of lateral membrane dynamics, described by a nonlinear PDE of fourth order. We then prove the existence and uniqueness of solutions of the presented model and simulate membrane dynamics(More)
Regulation of zinc uptake in roots of Arabidopsis thaliana has recently been modeled by a system of ordinary differential equations based on the uptake of zinc, expression of a transporter protein and the interaction between an activator and inhibitor. For certain parameter choices the steady state of this model becomes unstable upon variation in the(More)
The microscopic structure and anisotropy of plant cell walls greatly influence the mechanical properties, morphogenesis, and growth of plant cells and tissues. The microscopic structure and properties of cell walls are determined by the orientation and mechanical properties of the cellulose microfibrils and the mechanical properties of the cell wall matrix.(More)
It is known that the orientation of cellulose microfibrils within plant cell walls has an important impact on the morphogenesis of plant cells and tissues. Viewing the shape of a plant cell as a square prism or cylinder with the axis aligning with the primary direction of expansion and growth, the orientation of the microfibrils within the cell wall on the(More)