Mariusz K. Jaglarz

Learn More
The oocytes of many invertebrate and non-mammalian vertebrate species are not only asymmetrical but also polar in the distribution of organelles, localized RNAs and proteins, and the oocyte polarity dictates the patterning of the future embryo. Polarily located within the oocytes of many species is the Balbiani body (Bb), which in Xenopus is known to be(More)
A conserved feature of germ cells in many animal species is the presence of perinuclear electron-dense material called the "nuage" that is believed to be a precursor of germinal (or polar or P) granules. In Xenopus oogenesis the nuage is first observed near the nuclear envelope and subsequently in close contact with mitochondria, at which stage it is called(More)
Recent molecular studies have indicated a close relationship between Crustacea and Hexapoda and postulated their unification into the Pancrustacea/Tetraconata clade. Certain molecular analyses have also suggested that the crustacean lineage, which includes the Branchiopoda, might be the sister group of Hexapoda. We test this hypothesis by analyzing the(More)
In some species of insects, oocytes have vesicular organelles, termed accessory nuclei (ANs). The ANs form by budding off from the nuclear envelope of the oocyte and are filled with translucent matrix containing dense inclusions. One type of these inclusions contains coilin and small nuclear ribonucleoproteins (snRNPs) and is homologous to Cajal bodies. We(More)
Within the oocyte nucleus of the apple blossom weevil, Anthonomus pomorum (Insecta, Coleoptera) highly condensed and transcriptionaly inactive chromosomes form the karyosome. During its formation, within the nucleoplasm numerous, variably sized spherical inclusions termed nuclear bodies occur. As oogenesis progresses, the karyosome is gradually surrounded(More)
Although the overwhelming development of molecular techniques in recent decades has made ultrastructural studies less popular, to the point that ultrastructural interpretation is becoming a dying art, it still remains an indispensable tool for cell and developmental biologists. The introduction of EM-immunocytochemistry and three-dimensional visualization(More)
We have developed a simple and reliable method of preserving antigen immunoreactivity with concomitant excellent retention of the cell ultrastructure. Using this method, we have been able to follow the origin and developmental stages of nuage accumulations within the nurse cell/oocyte syncytium in the ovary of the fruit fly, Drosophila melanogaster, at the(More)
Remipedia are enigmatic crustaceans of uncertain phylogenetic position with the general consensus that they are crucial for understanding the crustacean/arthropod evolution. It has been demonstrated previously that the features of the ovary organization and subcellular aspects of oogenesis are useful in resolving phylogenetic relationships in arthropods(More)
The results of systematic cytochemical and EM studies on the distribution of actin filaments and microtubules in hymenopteran nurse cells are presented. We demonstrate that each nurse cell nucleus is surrounded by a thick three-dimensional cage of microtubules that is engaged in maintaining the position of the nuclei in the cell centers during the flow of(More)