Marius Staring

Learn More
Medical image registration is an important task in medical image processing. It refers to the process of aligning data sets, possibly from different modalities (e.g., magnetic resonance and computed tomography), different time points (e.g., follow-up scans), and/or different subjects (in case of population studies). A large number of methods for image(More)
An automatic method for delineating the prostate (including the seminal vesicles) in three-dimensional magnetic resonance scans is presented. The method is based on nonrigid registration of a set of prelabeled atlas images. Each atlas image is nonrigidly registered with the target patient image. Subsequently, the deformed atlas label images are fused to(More)
A novel atlas-based segmentation approach based on the combination of multiple registrations is presented. Multiple atlases are registered to a target image. To obtain a segmentation of the target, labels of the atlas images are propagated to it. The propagated labels are combined by spatially varying decision fusion weights. These weights are derived from(More)
A popular technique for nonrigid registration of medical images is based on the maximization of their mutual information, in combination with a deformation field parameterized by cubic B-splines. The coordinate mapping that relates the two images is found using an iterative optimization procedure. This work compares the performance of eight optimization(More)
We present a stochastic gradient descent optimisation method for image registration with adaptive step size prediction. The method is based on the theoretical work by Plakhov and Cruz (J. Math. Sci. 120(1):964–973, 2004). Our main methodological contribution is the derivation of an image-driven mechanism to select proper values for the most important free(More)
An algorithm is presented for the efficient semi-automatic construction of a detailed reference standard for registration in thoracic CT. A well-distributed set of 100 landmarks is detected fully automatically in one scan of a pair to be registered. Using a custom-designed interface, observers locate corresponding anatomic locations in the second scan. The(More)
Atlas-based segmentation is a powerful generic technique for automatic delineation of structures in volumetric images. Several studies have shown that multi-atlas segmentation methods outperform schemes that use only a single atlas, but running multiple registrations on volumetric data is time-consuming. Moreover, for many scans or regions within scans, a(More)
Radiation therapy for cervical cancer can benefit from image registration in several ways, for example by studying the motion of organs, or by (partially) automating the delineation of the target volume and other structures of interest. In this paper, the registration of cervical data is addressed using mutual information (MI) of not only image intensity,(More)
Medical images that are to be registered for clinical application often contain both structures that deform and ones that remain rigid. Nonrigid registration algorithms that do not model properties of different tissue types may result in deformations of rigid structures. In this article a local rigidity penalty term is proposed which is included in the(More)
In this paper we study the use of an adaptive quantization step size, instead of a fixed one, for the Scalar Costa Scheme. We propose an adaptation method based on Weber’s law. This allows for a more effective embedding, which is also shown to render the watermark robust against sample value scaling. A model for the bit error probability due to the(More)