Marius Schmidt

Learn More
Serial femtosecond crystallography using ultrashort pulses from x-ray free electron lasers (XFELs) enables studies of the light-triggered dynamics of biomolecules. We used microcrystals of photoactive yellow protein (a bacterial blue light photoreceptor) as a model system and obtained high-resolution, time-resolved difference electron density maps of(More)
Singular value decomposition (SVD) is a technique commonly used in the analysis of spectroscopic data that both acts as a noise filter and reduces the dimensionality of subsequent least-squares fits. To establish the applicability of SVD to crystallographic data, we applied SVD to calculated difference Fourier maps simulating those to be obtained in a(More)
Singular value decomposition (SVD) separates time-dependent crystallographic data into time-independent and time-dependent components. Procedures for the effective application of SVD to time-resolved macromolecular crystallographic data have yet to be explored systematically. Here, the applicability of SVD to experimental crystallographic data is tested by(More)
Trans-to-cis isomerization, the key reaction in photoactive proteins, usually cannot occur through the standard one-bond-flip mechanism. Owing to spatial constraints imposed by a protein environment, isomerization probably proceeds through a volume-conserving mechanism in which highly choreographed atomic motions are expected, the details of which have not(More)
We present the structures of bovine catalase in its native form and complexed with ammonia and nitric oxide, obtained by X-ray crystallography. Using the NO generator 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate, we were able to generate sufficiently high NO concentrations within the catalase crystals that substantial occupation was observed despite a high(More)
The high-yield expression and purification of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR) and its characterization by a variety of methods, notably Laue crystallography, are reported. A key component of the expression system is an artificial ccNiR gene in which the N-terminal signal peptide from the highly expressed S. oneidensis protein(More)
The first experimental data from single-particle scattering experiments from free electron lasers (FELs) are now becoming available. The first such experiments are being performed on relatively large objects such as viruses, which produce relatively low-resolution, low-noise diffraction patterns in so-called "diffract-and-destroy" experiments. We describe a(More)
Free-energy landscapes decisively determine the progress of enzymatically catalyzed reactions [Cornish-Bowden (2012), Fundamentals of Enzyme Kinetics, 4th ed.]. Time-resolved macromolecular crystallography unifies transient-state kinetics with structure determination [Moffat (2001), Chem. Rev. 101, 1569-1581; Schmidt et al. (2005), Methods Mol. Biol. 305,(More)
Time-resolved (TR) crystallography is a unique method for determining the structures of intermediates in biomolecular reactions. The technique reached its mature stage with the development of the powerful third-generation synchrotron X-ray sources, and the advances in data processing and analysis of time-resolved Laue crystallographic data. A time(More)
A method for determining a comprehensive chemical kinetic mechanism in macromolecular reactions is presented. The method is based on five-dimensional crystallography, where, in addition to space and time, temperature is also taken into consideration and an analysis based on singular value decomposition is applied. First results of such a time-resolved(More)