Learn More
It has been long debated whether averaged electrical responses recorded from the scalp result from stimulus-evoked brain events or stimulus-induced changes in ongoing brain dynamics. In a human visual selective attention task, we show that nontarget event-related potentials were mainly generated by partial stimulus-induced phase resetting of multiple(More)
Human event-related potentials (ERPs) were recorded from 10 subjects presented with visual target and nontarget stimuli at five screen locations and responding to targets presented at one of the locations. The late positive response complexes of 25-75 ERP average waveforms from the two task conditions were simultaneously analyzed with Independent Component(More)
In this study, a linear decomposition technique, independent component analysis (ICA), is applied to single-trial multichannel EEG data from event-related potential (ERP) experiments. Spatial filters derived by ICA blindly separate the input data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain(More)
OBJECTIVES Electrical potentials produced by blinks and eye movements present serious problems for electroencephalographic (EEG) and event-related potential (ERP) data interpretation and analysis, particularly for analysis of data from some clinical populations. Often, all epochs contaminated by large eye artifacts are rejected as unusable, though this may(More)
Scalp-recorded electroencephalographic (EEG) signals produced by partial synchronization of cortical field activity mix locally synchronous electrical activities of many cortical areas. Analysis of event-related EEG signals typically assumes that poststimulus potentials emerge out of a flat baseline. Signals associated with a particular type of cognitive(More)
This review discusses the theory and practical application of independent component analysis (ICA) to multi-channel EEG data. We use examples from an audiovisual attention-shifting task performed by young and old subjects to illustrate the power of ICA to resolve subtle differences between evoked responses in the two age groups. Preliminary analysis of(More)
Recent imaging and clinical studies have challenged the concept that the functional role of the cerebellum is exclusively in the motor domain. We present evidence of slowed covert orienting of visuospatial attention in patients with developmental cerebellar abnormality (patients with autism, a disorder in which at least 90% of all postmortem cases reported(More)
Spatial visual attention modulates the first negative-going deflection in the human averaged event-related potential (ERP) in response to visual target and non-target stimuli (the N1 complex). Here we demonstrate a decomposition of N1 into functionally independent subcomponents with functionally distinct relations to task and stimulus conditions. ERPs were(More)
Although under some conditions the attention-related late positive event-related potential (ERP) response (LPC) is apparently normal in autism during visual processing, the LPC elicited by visuospatial processing may be compromised. Results from this study provide evidence for abnormalities in autism in two components of the LPC generated during spatial(More)
Event-related potentials (ERPs), are portions of electroencephalo-graphic (EEG) recordings that are both time-and phase-locked to experimental events. ERPs are usually averaged to increase their signal/noise ratio relative to non-phase locked EEG activity , regardless of the fact that response activity in single epochs may vary widely in time course and(More)