Learn More
Multiwalled carbon nanotubes (MWCNTs) exhibit physical properties that render them ideal candidates for application as noninvasive mediators of photothermal cancer ablation. Here, we demonstrate that use of MWCNTs to generate heat in response to near-infrared radiation (NIR) results in thermal destruction of kidney cancer in vitro and in vivo. We document(More)
Hyperpermeable tumor vessels are responsible for elevated interstitial fluid pressure and altered flow patterns within the tumor microenvironment. These aberrant hydrodynamic stresses may enhance tumor development by stimulating the angiogenic activity of endothelial cells lining the tumor vasculature. However, it is currently not known to what extent shear(More)
Although successful remission has been achieved when cancer is diagnosed and treated during its earliest stages of development, a tumor that has established neovascularization poses a significantly greater risk of mortality. The inability to recapitulate the complexities of a maturing in vivo tumor microenvironment in an in vitro setting has frustrated(More)
The integration of tissue engineering strategies with microfluidic technologies has enabled the design of in vitro microfluidic culture models that better adapt to morphological changes in tissue structure and function over time. These biomimetic microfluidic scaffolds accurately mimic native 3D microenvironments, as well as permit precise and simultaneous(More)
BACKGROUND Therapeutic irreversible electroporation (IRE) is an emerging technology for the non-thermal ablation of tumors. The technique involves delivering a series of unipolar electric pulses to permanently destabilize the plasma membrane of cancer cells through an increase in transmembrane potential, which leads to the development of a tissue lesion.(More)
This study introduces the use of high-frequency pulsed electric fields for tissue electroporation. Through the development of finite element models and the use of analytical techniques, electroporation with rectangular, bipolar pulses is investigated. The electric field and temperature distribution along with the associated transmembrane potential(More)
Thermal preconditioning protocols for cardiac cells were identified which produce elevated HSP70 levels while maintaining high cell viability. Bovine aortic endothelial cells were heated with a water bath at temperatures ranging from 44 to 50 degrees C for periods of 1-30 min. Thermal stimulation protocols were determined which induce HSP70 expression(More)
The direct correlation between levels of heat shock protein expression and efficiency of its tissue protection function motivates this study of how thermal doses can be used for an optimal stress protocol design. Heat shock protein 70 (HSP70) expression kinetics were visualized continuously in cultured bovine aortic endothelial cells (BAECs) on a microscope(More)
Cells cultured within a three-dimensional (3D) in vitro environment have the ability to acquire phenotypes and respond to stimuli analogous to in vivo biological systems. This approach has been utilized in tissue engineering and can also be applied to the development of a physiologically relevant in vitro tumor model. In this study, collagen I hydrogels(More)
This study demonstrates the capability of multiwalled carbon nanotubes (MWNTs) coupled with laser irradiation to enhance treatment of cancer cells through enhanced and more controlled thermal deposition, increased tumor injury, and diminished heat shock protein (HSP) expression. We also explored the potential promise of MWNTs as drug delivery agents by(More)