Marisa Srivareerat

Learn More
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by increased deposition of beta-amyloid (Aβ) peptides and progressive cholinergic dysfunction in regions of the brain involved in learning and memory processing. In AD, progressive accumulation of Aβ peptide impairs nicotinic acetylcholine receptor (nAChR) function by an(More)
BACKGROUND Alzheimer's disease (AD) is a degenerative disorder that leads to progressive cognitive decline. Alzheimer's disease develops as a result of over-production and aggregation of beta-amyloid (Abeta) peptides in the brain. The reason for variation in the gravity of symptoms among AD patients is unknown and might result from patient-related factors(More)
Although it is generally agreed that Aβ contributes to the pathogenesis of AD, its precise role in AD and the reason for the varying intensity and time of onset of the disease have not been elucidated. In addition to genetic factors, environmental issues such as stress may also play a critical role in the etiology of AD. This study examined the effect of(More)
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cholinergic dysfunction and deposition of beta-amyloid (Aβ) in regions of the brain associated with learning and memory. The sporadic nature and late onset of most AD cases suggests that aside from biological determinants, environmental factors such as stress may also play(More)
Although it is generally accepted that Abeta contributes to the pathogenesis of Alzheimer's disease (AD), other factors that impact the severity and time of onset of the disease are not well known. Aside from genetic factors, environmental factors such as stress may also play a critical role in the manifestation of AD. The present study examined the effect(More)
In addition to genetic aspects, environmental factors such as stress may also play a critical role in the etiology of the late onset, sporadic Alzheimer's disease (AD). The present study examined the effect of chronic psychosocial stress in a sub-threshold Aβ (subAβ) rat model of AD on long-term depression by two techniques: electrophysiological recordings(More)
We have previously shown that nicotine prevents stress-induced memory impairment. In this study, we have investigated the role of α7- and α4β2-nicotinic acetylcholine receptors (nAChRs) in the protective effect of nicotine during chronic stress conditions. Chronic psychosocial stress was induced using a form of rat intruder model. During stress, specific(More)
Caffeine has been reported to enhance cognition in animal and humans. Additionally, caffeine alleviates cognitive impairment associated with a number of disorders including Alzheimer’s disease. The lipophilic nature of caffeine allows for rapid absorption into the bloodstream where it freely crosses the blood–brain barrier. Caffeine promotes dendritic spine(More)
We have studied the effects of spatial learning and predator stress-induced amnesia on the expression of calcium/calmodulin-dependent protein kinase II (CaMKII), brain-derived neurotrophic factor (BDNF) and calcineurin in the hippocampus, basolateral amygdala (BLA), and medial prefrontal cortex (mPFC). Adult male rats were given a single training session in(More)
Alzheimer's disease (AD) is a degenerative disorder that leads to progressive, irreversible cognitive decline. It develops as a result of over-production and aggregation of β-amyloid (Aβ) peptides in the brain. We have recently shown that stress exacerbates, while nicotine prevents long-term memory impairment induced by β-Amyloid. In this study, we(More)