Learn More
In this work, we study the combinatorial structure and the computational complexity of Nash equilibria for a certain game that models selfish routing over a network consisting of m parallel links. We assume a collection of n users, each employing a mixed strategy, which is a probability distribution over links, to control the routing of its own assigned(More)
In this work, we introduce and study a new, potentially rich model for selfish routing over non-cooperative networks as an interesting hybridization of the two prevailing such models, namely the KP model [26] and the W model [36]. In the hybrid model, each of n users is using a mixed strategy to ship its unsplittable traffic over a network consisting of m(More)
We consider selfish routing over a network consisting of m parallel links through which $n$ selfish users route their traffic trying to minimize their own expected latency. We study the class of mixed strategies in which the expected latency through each link is at most a constant multiple of the optimum maximum latency had global regulation been available.(More)
A Nash equilibrium of a routing network represents a stable state of the network where no user finds it beneficial to unilaterally deviate from its routing strategy. In this work, we investigate the structure of such equilibria within the context of a certain game that models selfish routing for a set of n users each shipping its traffic over a network(More)
We consider a special case of weighted congestion games with player-specific latency functions where each player uses for each particular resource a fixed (non-decreasing) delay function together with a player-specific constant. For each particular resource, the resource-specific delay function and the player-specific constant (for that resource) are(More)
We study the combinatorial structure and computational complexity of extreme Nash equilibria, ones that maximize or minimize a certain objective function, in the context of a selfish routing game. Specifically, we assume a collection of n users, each employing a mixed strategy, which is a probability distribution over m parallel links, to control the(More)
In a Voronoi game, each of a finite number of players chooses a point in some metric space. The utility of a player is the total measure of all points that are closer to him than to any other player, where points equidistant to several players are split up evenly among the closest players. In a recent paper, Dürr and Thang (2007) considered discrete Voronoi(More)
Counting networks are a class of distributed data structures that support highly concurrent implementations of shared Fetch&Incre-ment counters. Applications of these counters include shared pools and stacks, load balancing, and software barriers [4, 12, 13, 18]. A limitation of counting networks is that the resulting shared counters can be incremented, but(More)
A distinguishing feature of today’s large-scale platforms for distributed computation and communication, such as the Internet, is their heterogeneity, predominantly manifested by the fact that a wide variety of communication protocols are simultaneously running over different distributed hosts. A fundamental question that naturally poses itself concerns the(More)
We study extreme Nash equilibria in the context of a selfish routing game. Specifically, we assume a collection of n users, each employing a mixed strategy, which is a probability distribution over m parallel identical links, to control the routing of its own assigned traffic. In a Nash equilibrium, each user selfishly routes its traffic on those links that(More)