Mariona Sodupe

Learn More
Metal chelation is considered a rational therapeutic approach for interdicting Alzheimer's amyloid pathogenesis. At present, enhancing the targeting and efficacy of metal-ion chelating agents through ligand design is a main strategy in the development of the next generation of metal chelators. Inspired by the traditional dye Thioflavin-T, we have designed(More)
Elucidation of the coordination of metal ions to Aβ is essential to understand their role in its aggregation and to rationally design new chelators with potential therapeutic applications in Alzheimer disease. Because of that, in the last 10 years several studies have focused their attention in determining the coordination properties of Cu(2+) interacting(More)
The coordination properties of the four natural aromatic amino acids (AA(arom) = Phe, Tyr, Trp, and His) to Cu+ and Cu2+ have been exhaustively studied by means of ab initio calculations. For Cu+-Phe, Cu+-Tyr and Cu+-Trp, the two charge solvated tridentate N/O/ring and bidentate N/ring structures, with the metal cation interacting with the pi system of the(More)
The role that silica surface could have played in prebiotic chemistry as a catalyst for peptide bond formation has been addressed at the B3LYP/6-31+G(d,p) level for a model reaction involving glycine and ammonia on a silica cluster mimicking an isolated terminal silanol group present at the silica surface. Hydrogen-bond complexation between glycine and the(More)
The adsorption of H2O, NH3 and HCOOH as polar probe molecules and C6H6 and CH4 as non-polar ones on a series of zig-zag (n,0) single-walled boron nitride nanotubes (BNNTs) and on a boron-nitride mono-layer (BNML) has been studied by means of B3LYP-D* periodic calculations. Computed electrostatic potential maps for the pristine BN nanomaterials indicate that(More)
Metal ions have been implicated in several neurodegenerative diseases, including Alzheimer's disease, as their dyshomeostasis may lead to production of reactive oxygen species as well as increased toxicity of amyloid protein aggregates. In this work, we present design and synthesis of three novel multifunctional hydroxypyridinone ligands, HL11, HL12, and(More)
The catalytic role that Cu(2+) cations play in the peptide bond formation has been addressed by means of density functional calculations. First, the Cu(2+)-(glycine)2 --> Cu(2+)-(glycylglycine) + H2O reaction was investigated since mass spectrometry low collision activated dissociation (CAD) spectra of Cu(2+)-(glycine)2 led to the elimination of a water(More)
The imidazole ring is part of the lateral chain of histidine. One of the main features of this amino acid is the ability to coordinate copper, especially Cu(2+), because of the intermediate base nature of its imidazole ring, which has a great biological relevance. Proteins such as cytochrome c oxidase, a crucial enzyme in the respiratory chain, and(More)
Cobalt cations are open shell systems with several possible electronic states arising from the different occupations of the 3d and 4s orbitals. The influence of these occupations on the relative stability of the coordination modes of the metal cation to glycine has been studied by means of theoretical methods. The structure and vibrational frequencies have(More)