Marion Scharpfenecker

Learn More
Genetic studies in mice and humans have shown that the transforming growth factor-beta (TGF-beta) type-I receptor activin receptor-like kinase 1 (ALK1) and its co-receptor endoglin play an important role in vascular development and angiogenesis. Here, we demonstrate that ALK1 is a signalling receptor for bone morphogenetic protein-9 (BMP-9) in endothelial(More)
PURPOSE Transforming growth factor-beta (TGF-beta) and Notch signaling pathways are important regulators of vascular homeostasis and vessel remodeling; mutations in these pathways can lead to vascular disorders. Similar vascular phenotypes develop in the normal tissues of cancer patients as a long-term effect of radiotherapy. Irradiation most severely(More)
Vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGFbeta) are potent regulators of angiogenesis. How VEGF and TGFbeta signaling pathways crosstalk is not well understood. Therefore, we analyzed the effects of the TGFbeta type-I-receptor inhibitors (SB-431542 and LY-2157299) and VEGF on endothelial cell (EC) function and(More)
BACKGROUND AND PURPOSE Endoglin is a transforming growth factor beta (TGF-beta) co-receptor mainly expressed in dividing endothelial cells. It regulates cell proliferation and survival and is upregulated at sites of vessel repair. Mutations in endoglin have been linked to the vascular disease hereditary hemorrhagic telangiectasia (HHT). HHT patients display(More)
BACKGROUND AND PURPOSE We previously showed that mice with reduced levels of the transforming growth factor-beta (TGF-β) co-receptor endoglin (Eng(+/-) mice) develop less fibrosis and vascular damage after kidney irradiation than their wild type (Eng(+/+) mice) littermates; however, the underlying mechanism was unclear. Results from current studies suggest(More)
BACKGROUND AND PURPOSE Endoglin is a transforming growth receptor beta (TGF-β) co-receptor, which plays a crucial role in the development of late normal tissue damage. Mice with halved endoglin levels (Eng(+/-) mice) develop less inflammation, vascular damage and fibrosis after kidney irradiation compared to their wild type littermates (Eng(+/+) mice). This(More)
BACKGROUND AND PURPOSE Activin receptor-like kinase 1 (ALK1) is a transforming growth factor β (TGF-β) receptor, which is mainly expressed in endothelial cells regulating proliferation and migration in vitro and angiogenesis in vivo. Endothelial cells also express the co-receptor endoglin, which modulates ALK1 effects on endothelial cells. Our previous(More)
PURPOSE We recently demonstrated that endoglin, an ancillary transforming growth factor beta (TGF-β) receptor, modulates vascular damage and fibrosis formation and influences renal function after kidney irradiation. We also suggested that this was partially accomplished by endoglin-mediated regulation of cytokine production in macrophages. Endoglin is(More)
PURPOSE The late side effects of kidney irradiation include vascular damage and fibrosis, which are promoted by an irradiation-induced inflammatory response. We therefore treated kidney-irradiated mice with the anti-inflammatory and angiogenesis-modulating drug thalidomide in an attempt to prevent the development of late normal tissue damage and radiation(More)
INTRODUCTION Mesothelioma often presents with a high vessel count and increased vascular growth factors levels. Interference with angiogenesis may therefore improve outcome. This study reports on clinical and translational parameters in patients treated with the small molecule tyrosine kinase inhibitor axitinib and chemotherapy. METHODS Chemonaive(More)