Learn More
With the aim of explaining the variations in microcystin (MC) concentrations during cyanobacterial blooms, we studied several Microcystis aeruginosa populations blooming in different freshwater ecosystems located in the same geographical area. As assessed by real-time PCR, it appeared that the potentially MC-producing cells (mcyB(+)) were predominant (70 to(More)
The effects of viral lysis and heterotrophic nanoflagellate grazing (top down forces) on prokaryotic mortality and their subsequent impact on their metabolism were estimated in the upper euphotic and deeper aphotic depth of 11 freshwater lakes located in the French Massif Central. The standing stocks of viruses (VA) and heterotrophic nanoflagellate (HNF)(More)
The variations in microcystin concentrations during cyanobacterial blooms in freshwater ecosystems appear to depend on numerous factors, which have still not been fully identified. To contribute to clarify the situation, we have developed a spatial sampling approach to determine the dynamics and genetic diversity of a bloom-forming population of Microcystis(More)
Microcystis aeruginosa is a toxic cyanobacterium, which is able to bloom in a wide range of freshwater ecosystems. By sequencing the Internal Transcribed Spacer (ITS) of the ribosomal operon, we compared the genetic composition of several French bloom-forming M. aeruginosa populations from two reservoirs located on the Loire River, at two sampling points(More)
Microcystis is a toxic colony-forming cyanobacterium, which can bloom in a wide range of freshwater ecosystems. Despite the ecological advantage of the colonial form, few studies have paid attention to the size of Microcystis colonies in the field. With the aim of evaluating the impact of a fluctuating physical environment on the colony size, the genotypic(More)
The benthic recruitment of Microcystis was simulated in vitro in order to characterize the colonies of Microcystis recruited and to study the impact of intracellular and extracellular microcystins (MCs), and the influence of colony size on the recruitment process. We observed recruitment dynamics consisting of a lag phase followed by a peak and then a(More)
In order to study the setup of a Microcystis bloom and the evolution of its toxic potential, we studied the temporal and vertical variations in Microcystis aeruginosa abundance, microcystins (MC) concentrations (intracellular and extracellular), and the relative proportion of potentially microcystin-producing cells (MC-producing cells) in relation to(More)
Microcystis is a toxic freshwater cyanobacterium with an annual life cycle characterized by the alternation of a planktonic proliferation stage in summer and a benthic resting stage in winter. Given the importance of both stages for the development and the survival of the population, we investigated the genotypic composition of the planktonic and benthic(More)
Nostocalean cyanobacteria are known to proliferate abundantly in eutrophic aquatic ecosystems, and to produce several cyanotoxins, including anatoxin-a. In this study, we investigated both the resistance and toxic potential of the akinetes (resistant cells), using cyanobacterial cultures and akinetes extracted from the sediment of Lake Aydat (France)(More)
The first results of the horizontal distribution of the cell abundance and toxicity of Microcystis in the hypereutrophic Moroccan reservoir Lalla Takerkoust are reported. An unexpected spatio-temporal heterogeneity has been shown between Microcystis abundance and microcystins concentrations. The principal determining factors were analyzed in order to(More)