Learn More
The yKu protein of Saccharomyces cerevisiae is important for genome stability by repressing recombination involving telomeric sequences. The mechanism of this repression is not known, but silent heterochromatin such as HML, HMR, and telomeres are compartmentalized at the nuclear periphery and yKu is proposed to interact with these regions and to play a role(More)
The yKu protein of Saccharomyces cerevisiae is important for genome stability by repressing recombination involving telomeric sequences. The mechanism of this repression is not known but silent heterochromatin such as HML, HMR and telomeres are compartmentalized at the nuclear periphery and yKu is proposed to interact with these regions and play a role in(More)
Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion,(More)
Trypanosoma brucei switches between variant surface glycoproteins (VSGs) allowing immune escape. The active VSG is in one of many telomeric bloodstream form VSG expression sites (BESs), also containing expression site-associated genes (ESAGs) involved in host adaptation. The role of BES sequence diversity in parasite virulence can best be understood through(More)
One of the major virulence factors of the malaria causing parasite is the Plasmodium falciparum encoded erythrocyte membrane protein 1 (PfEMP1). It is translocated to It the membrane of infected erythrocytes and expressed from approximately 60 var genes in a mutually exclusive manner. Switching of var genes allows the parasite to alter functional and(More)
BACKGROUND African trypanosomes (including Trypanosoma brucei) are unicellular parasites which multiply in the mammalian bloodstream. T. brucei has about twenty telomeric bloodstream form Variant Surface Glycoprotein (VSG) expression sites (BESs), of which one is expressed at a time in a mutually exclusive fashion. BESs are polycistronic transcription(More)
  • 1