Marion H. M. Oudshoorn

Learn More
The aim of the present study was to use semi-synthetic lipid mixtures to mimic the complex lipid composition, organization and thermotropic behaviour of vernix caseosa (VC) lipids. As VC shows multiple protecting and barrier supporting properties before and after birth, it is suggested that a VC substitute could be an innovative barrier cream for barrier(More)
The aim of this work was to obtain well-defined HyPG-MA (methacrylated hyperbranched polyglycerol) microparticles with uniform sizes. Therefore, three different preparation methods were evaluated. First, we assessed a micromolding technique using rigid SU-8 (a photoresist based on epoxies) grids. Independent of the surface treatment of the SU-8 grid or the(More)
The multiple protecting and barrier-supporting properties of the creamy, white biofilm vernix caseosa (VC) before and after birth suggest that a VC biomimetic could be an innovative barrier cream for barrier-deficient skin. The aim of this study was the rational design and preparation of synthetic biofilms mimicking the unique composition and properties of(More)
The skin of the third trimester fetus and early newborn exhibits a complex, multifunctional, highly hydrated but viscous skin-surface biofilm called vernix caseosa (VC). During birth, VC undergoes a substantial change from an aqueous and warm surrounding into a gaseous and colder environment postnatally. The aim of this study was to investigate the(More)
The aim of this study was twofold, that is the generation of a reliable model for skin barrier disruption and repair and to evaluate recovery of damaged skin after application of vernix caseosa (VC). VC was selected as its wound healing properties were suggested previously, but never clearly demonstrated. Five different levels of barrier disruption in mice,(More)
Photopolymerizable hydrogels, formed by UV-exposure of photosensitive polymers in the presence of photoinitiators, are widely used materials in tissue engineering research employed for cellular entrapment and patterning. During photopolymerization, the entrapped cells are directly exposed to polymer and photoinitiator molecules. To develop strategies that(More)
To disrupt the barrier function of the skin, different in vivo methods have been established, e.g., by acetone wiping or tape-stripping. In this study, the acetone-induced barrier disruption of hairless mice was investigated in order to establish a reliable model to study beneficial, long-term effects on barrier recovery after topical application. For both(More)
Hyperbranched polyglycerol (HyPG; M(n) 2000g/mol) was derivatized with glycidyl methacrylate (GMA) in dimethyl sulfoxide using 4-(N,N-dimethylamino)pyridine as a catalyst to obtain methacrylated HyPG (HyPG-MA). The degree of substitution (DS, the percentage of derivatized hydroxyl groups), established by NMR and RP-HPLC, was fully controlled in the range of(More)
Pulmonary immunization against inhaled pathogens such as Mycobacterium tuberculosis would induce local and systemic immune responses and protect from entry and dissemination of the pathogen. The aim of this study was to evaluate cationic submicron emulsion as a potential carrier for DNA vaccines to the lung. DNA loaded emulsions were 128-152 nm in size and(More)
The aim of this work was to investigate whether topical application of synthetic biofilms supports and accelerates the recovery of the murine skin barrier, disrupted by sequential tape stripping. Therefore, various biofilms were applied topically on disrupted mouse skin to determine which formulation could improve barrier function, as was observed(More)
  • 1