Learn More
Dopamine is synonymous with reward and motivation in mammals. However, only recently has dopamine been linked to motivated behaviour and rewarding reinforcement in fruitflies. Instead, octopamine has historically been considered to be the signal for reward in insects. Here we show, using temporal control of neural function in Drosophila, that only(More)
Tissue-specific gene expression using the upstream activating sequence (UAS)–GAL4 binary system has facilitated genetic dissection of many biological processes in Drosophila melanogaster. Refining GAL4 expression patterns or independently manipulating multiple cell populations using additional binary systems are common experimental goals. To simplify these(More)
Rhythmic motor behaviors such as feeding are driven by neural networks that can be modulated by external stimuli and internal states. In Drosophila, ingestion is accomplished by a pump that draws fluid into the esophagus. Here we examine how pumping is regulated and characterize motor neurons innervating the pump. Frequency of pumping is not affected by(More)
Dopamine (DA) is synonymous with reward and motivation in mammals 1,2. However, only recently has dopamine been linked to motivated behavior and rewarding reinforcement in fruit flies 3,4. Instead octopamine (OA) has historically been considered the signal for reward in insects 5-7. Here we show using temporal control of neural function in Drosophila that(More)
In the visual system, peripheral processing circuits are often tuned to specific stimulus features. How this selectivity arises and how these circuits are organized to inform specific visual behaviors is incompletely understood. Using forward genetics and quantitative behavioral studies, we uncover an input channel to motion detecting circuitry in(More)
Visual motion cues provide animals with critical information about their environment and guide a diverse array of behaviors. The neural circuits that carry out motion estimation provide a well-constrained model system for studying the logic of neural computation. Through a confluence of behavioral, physiological, and anatomical experiments, taking advantage(More)
Detecting the orientation and movement of edges in a scene is critical to visually guided behaviors of many animals. What are the circuit algorithms that allow the brain to extract such behaviorally vital visual cues? Using in vivo two-photon calcium imaging in Drosophila, we describe direction selective signals in the dendrites of T4 and T5 neurons,(More)
Sighted animals extract motion information from visual scenes by processing spatiotemporal patterns of light falling on the retina. The dominant models for motion estimation exploit intensity correlations only between pairs of points in space and time. Moving natural scenes, however, contain more complex correlations. We found that fly and human visual(More)
BACKGROUND Chemotaxis, the ability to direct movements according to chemical cues in the environment, is important for the survival of most organisms. The vinegar fly, Drosophila melanogaster, displays robust olfactory aversion and attraction, but how these behaviors are executed via changes in locomotion remains poorly understood. In particular, it is not(More)
Visual motion cues are used by many animals to guide navigation across a wide range of environments. Long-standing theoretical models have made predictions about the computations that compare light signals across space and time to detect motion. Using connectomic and physiological approaches, candidate circuits that can implement various algorithmic steps(More)