Learn More
In self-organized critical (SOC) systems avalanche size distributions follow power-laws. Power-laws have also been observed for neural activity, and so it has been proposed that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo, evidence for SOC is still lacking. Therefore, we analyzed highly parallel spike recordings from(More)
Neuronal activity differs between wakefulness and sleep states. In contrast, an attractor state, called self-organized critical (SOC), was proposed to govern brain dynamics because it allows for optimal information coding. But is the human brain SOC for each vigilance state despite the variations in neuronal dynamics? We characterized neuronal(More)
Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS). At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex(More)
Gamma oscillations (40-120 Hz), usually associated with waking functions, can be recorded in the deepest stages of sleep in animals. The full details of their large-scale coordination across multiple cortical networks are still unknown. Furthermore, it is not known whether oscillations with similar characteristics are also present in the human brain. In(More)
A Matlab®-based software package, EPILAB, was developed for supporting researchers in performing studies on the prediction of epileptic seizures. It provides an intuitive and convenient graphical user interface. Fundamental concepts that are crucial for epileptic seizure prediction studies were implemented. This includes, for example, the development and(More)
From the very beginning the seizure prediction community faced problems concerning evaluation, standardization, and reproducibility of its studies. One of the main reasons for these shortcomings was the lack of access to high-quality long-term electroencephalography (EEG) data. In this article we present the EPILEPSIAE database, which was made publicly(More)
The need of a reliable seizure prediction is motivated by the 50 million people in the world suffering from epilepsy, of whom 30% have no control on seizures with current pharmacological treatments. Seizure prediction research holds great promise for such patients, since an effective algorithm will enable the development of a closed-loop system that(More)
The ability of computational intelligence methods to predict epileptic seizures is evaluated in long-term EEG recordings of 278 patients suffering from pharmaco-resistant partial epilepsy, also known as refractory epilepsy. This extensive study in seizure prediction considers the 278 patients from the European Epilepsy Database, collected in three epilepsy(More)