Learn More
We consider the problem of integration of d-variate analytic functions defined on the unit cube with directional derivatives of all orders bounded by 1. We prove that the Clenshaw Curtis Smolyak algorithm leads to weak tractability of the problem. This seems to be the first positive tractability result for the Smolyak algorithm for a normalized and(More)
We prove comparison results for the Swendsen-Wang (SW) dynamics, the heat-bath (HB) dynamics for the Potts model and the single-bond (SB) dynamics for the random-cluster model on arbitrary graphs. In particular, we prove that rapid (i.e. polynomial) mixing of HB implies rapid mixing of SW on graphs with bounded maximum degree and that rapid mixing of SW and(More)
We analyze univariate oscillatory integrals for the standard Sobolev spaces H s of periodic and non-periodic functions with an arbitrary integer s ≥ 1. We find matching lower and upper bounds on the minimal worst case error of algorithms that use n function or derivative values. We also find sharp bounds on the information complexity which is the minimal n(More)
We prove upper bounds on the order of convergence of Frolov's cubature formula for numerical integration in function spaces of dominating mixed smoothness on the unit cube with homogeneous boundary condition. More precisely, we study worst-case integration errors for Besov B s p,θ and Triebel-Lizorkin spaces F s p,θ and our results treat the whole range of(More)