Mario Ulises Delgado-Jaime

  • Citations Per Year
Learn More
We demonstrate a novel pathway to control and stabilize oxygen vacancies in complex transition-metal oxide thin films. Using atomic layer-by-layer pulsed laser deposition (PLD) from two separate targets, we synthesize high-quality single-crystalline CaMnO3 films with systematically varying oxygen vacancy defect formation energies as controlled by coherent(More)
Two electronic structure descriptions, one based on orbitals and the other based on term symbols, have been implemented in a new Matlab-based program, CTM4DOC. The program includes a graphical user interface that allows the user to explore the dependence of details of electronic structure in transition metal systems, both in the ground and core-hole excited(More)
A new data analysis methodology for X-ray absorption near-edge spectroscopy (XANES) is introduced and tested using several examples. The methodology has been implemented within the context of a new Matlab-based program discussed in a companion related article [Delgado-Jaime et al. (2010), J. Synchrotron Rad. 17, 132-137]. The approach makes use of a Monte(More)
We show that with 2p3d resonant inelastic X-ray scattering (RIXS) we can accurately determine the charge-transfer parameters of CoF2, CoCl2, CoBr2, and CoS. The 160 meV resolution RIXS results are compared with charge-transfer multiplet calculations. The improved resolution and the direct observation of the crystal field and charge-transfer excitations(More)
The nature of the lowest energy bound-state transition in the Ru K-edge X-ray Absorption Spectra for a series of Grubbs-type ruthenium complexes was investigated. The pre-edge feature was unambiguously assigned as resulting from formally electric dipole forbidden Ru 4d<--1s transitions. The intensities of these transitions are extremely sensitive to the(More)
MOAnalyzer, a Matlab-based program, has been developed to facilitate the analysis of density functional theory output files from ORCA. The program allows the user to define fragments within a molecule and then provides information on the contribution of each fragment to the molecular orbitals based on the Loewdin population analysis. Correlations to(More)
In-situ carbon-thermal reduction of cobalt oxide nanoparticles supported on carbon nanotubes was studied by cobalt 2p3d resonant inelastic X-ray scattering (RIXS). The in-situ 2p X-ray absorption spectroscopy (XAS) and RIXS measurements were performed at 500, 600, and 700 °C, where four consistent excitation energies were used for RIXS acquisitions. After(More)
Metal-metal charge transfer (MMCT) is expected to be the main mechanism that enables the harvesting of solar light by iron-titanium oxides for photocatalysis. We have studied FeTiO3 as a model compound for MMCT with 1s2pRIXS at the Fe K-edge. The high-energy resolution XANES enables distinguishing five pre-edge features. The three first well distinct RIXS(More)
Ru K-edge XAS data indicate that second generation ruthenium-based olefin metathesis precatalysts (L = N-heterocyclic carbene) possess a more electron-deficient metal center than in the corresponding first generation species (L = tricyclohexylphosphine). This surprising effect is also observed from DFT calculations and provides a simple rationale for the(More)
Metal hydrides are invoked as important intermediates in both chemical and biological H2 production. In the [NiFe] hydrogenase enzymes, pulsed EPR and high-resolution crystallography have argued that the hydride interacts primarily at the Ni site. In contrast, in [NiFe] hydrogenase model complexes, it is observed that the bridging hydride interacts(More)