Mario Rasetti

Learn More
We show that the notion of generalized Berry phase i.e., non-abelian holonomy, can be used for enabling quantum computation. The computational space is realized by a n-fold degenerate eigenspace of a family of Hamiltonians parametrized by a manifold M. The point of M represents classical configuration of control fields and, for multi-partite systems,(More)
The existence is proved of a class of open quantum systems that admits a linear subspace C of the space of states such that the restriction of the dynamical semigroup to the states built over C is unitary. Such subspace allows for error-avoiding (noiseless) enconding of quantum information. PACS numbers: 71.10.Ad , 05.30.Fk
We show that 2+1-dimensional Euclidean quantum gravity is equivalent, under some mild topological assumptions, to a Gaussian fermionic system. In particular, for manifolds topologically equivalent to Σg × IR with Σg a closed and oriented Riemann surface of genus g, the corresponding 2+1-dimensional Euclidean quantum gravity may be related to the 3D-lattice(More)
We expand a set of notions recently introduced providing the general setting for a universal representation of the quantum structure on which quantum information stands. The dynamical evolution process associated with generic quantum information manipulation is based on the (re)coupling theory of SU(2) angular momenta. Such scheme automatically incorporates(More)
The spin–network quantum simulator model, which essentially encodes the (quantum deformed) SU(2) Racah–Wigner tensor algebra, is particularly suitable to address problems arising in low dimensional topology and group theory. In this combinatorial framework we implement families of finite–states and discrete–time quantum automata capable of accepting the(More)
We construct a quantum algorithm to approximate efficiently the colored Jones polynomial of the plat presentation of any oriented link L at a fixed root of unity q. Our construction is based on SU(2) Chern-Simons topological quantum field theory (and associated Wess-Zumino-Witten conformal field theory) and exploits the q-deformed spin network as(More)
In order to define a new method for analyzing the immune system within the realm of Big Data, we bear on the metaphor provided by an extension of Parisi’s model, based on a mean field approach. The novelty is the multilinearity of the couplings in the configurational variables. This peculiarity allows us to compare the partition function $$Z$$ Z with a(More)
The basic idea that stems out of this work is that large sets of data can be handled through an organized set of mathematical and computational tools rooted in a global geometric vision of data space allowing to explore the structure and hidden information patterns thereof. Based on this perspective, the objective is naturally that of discovering and(More)