Mario R Silva-Junior

Learn More
Vertical excitation energies and one-electron properties are computed for the valence excited states of 28 medium-sized organic benchmark molecules using multistate multiconfigurational second-order perturbation theory (MS-CASPT2) and the augmented correlation-consistent aug-cc-pVTZ basis set. They are compared with previously reported MS-CASPT2 results(More)
A benchmark set of 28 medium-sized organic molecules is assembled that covers the most important classes of chromophores including polyenes and other unsaturated aliphatic compounds, aromatic hydrocarbons, heterocycles, carbonyl compounds, and nucleobases. Vertical excitation energies and one-electron properties are computed for the valence excited states(More)
Semiempirical configuration interaction (CI) calculations with eight different Hamiltonians are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies and one-electron properties are computed using the same geometries as in our previous ab initio benchmark study on electronically excited states. The(More)
The ground and low-lying excited states of flavin mononucleotide (FMN) in the light, oxygen, and voltage sensitive (LOV) domain of the blue-light photosensor YtvA of Bacillus subtilis were studied by means of combined quantum-mechanical/molecular-mechanical (QM/MM) methods. The FMN cofactor (without the side chain) was treated with density functional theory(More)
Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole moments are computed using the same geometries (MP2/6-31G(*))(More)
CCSDR(3) calculations of vertical excitation energies are reported for a set of 24 molecules and 121 excited valence singlet states from a recently published benchmark of organic molecules. The same geometries (MP2/6-31G*) and basis set (TZVP) were employed as in our previous linear response CC2, CCSD, and CC3 calculations. The CCSDR(3) results are compared(More)
  • 1