Mario Pezzotti

Learn More
The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of(More)
The AP2/ERF protein family contains transcription factors that play a crucial role in plant growth and development and in response to biotic and abiotic stress conditions in plants. Grapevine (Vitis vinifera) is the only woody crop whose genome has been fully sequenced. So far, no detailed expression profile of AP2/ERF-like genes is available for grapevine.(More)
The development of massively parallel sequencing technologies enables the sequencing of total cDNA (RNA-Seq) to derive accurate measure of individual gene expression, differential splicing activity, and to discover novel regions of transcription, dramatically changing the way that the functional complexity of transcriptomes can be studied. Here we report on(More)
A collection of 1005 grapevine accessions was genotyped at 34 microsatellite loci (SSR) with the aim of analysing genetic diversity and exploring parentages. The comparison of molecular profiles revealed 200 groups of synonymy. The removal of perfect synonyms reduced the database to 745 unique genotypes, on which population genetic parameters were(More)
The natural environment for plants is composed of a complex set of abiotic stresses and biotic stresses. Plant responses to these stresses are equally complex. Systems biology approaches facilitate a multi-targeted approach by allowing one to identify regulatory hubs in complex networks. Systems biology takes the molecular parts (transcripts, proteins and(More)
We developed a genome-wide transcriptomic atlas of grapevine (Vitis vinifera) based on 54 samples representing green and woody tissues and organs at different developmental stages as well as specialized tissues such as pollen and senescent leaves. Together, these samples expressed ∼91% of the predicted grapevine genes. Pollen and senescent leaves had unique(More)
Nitric oxide (NO) is an essential regulatory molecule in several developmental processes and in the stress response in both animal and plant systems. Furthermore, key features of plant resistance to pathogens have been shown to depend on NO production, e.g., defense gene expression and the activation of a hypersensitive reaction (HR) in synergy with(More)
Downy mildew is a destructive grapevine disease caused by Plasmopara viticola (Berk. and Curt.) Berl. and de Toni, which can only be controlled by intensive fungicide treatments. Natural sources of resistance from wild grapevine (Vitis) species are used in conventional breeding approaches, but the signals and effectors involved in resistance in this(More)
We have initiated a systematic functional analysis of the MADS box, intervening region, K domain, C domain-type MADS box gene family in petunia. The starting point for this has been a reverse-genetics approach, aiming to select for transposon insertions into any MADS box gene. We have developed and applied a family signature insertion screening protocol(More)
We have sought to identify pistil-specific genes that can be used as molecular markers to study pistil development. For this purpose, a cDNA library was constructed from poly(A)+ RNA extracted from tobacco stigmas and styles at different developmental stages. Differential screening of this library led to the isolation of cDNA clones that correspond to genes(More)