Learn More
We introduce a unified optimization framework for geometry processing based on shape constraints. These constraints preserve or prescribe the shape of subsets of the points of a geometric data set, such as polygons, one-ring cells, volume elements, or feature curves. Our method is based on two key concepts: a shape proximity function and shape projection(More)
Mesh editing under constraints is a challenging task with numerous applications in geometric modeling, industrial design, and architectural form finding. Recent methods support constraint-based exploration of meshes with fixed connectivity, but commonly lack local control. Because constraints are often globally coupled, a local modification by the user can(More)
In architectural design, surface shapes are commonly subject to geometric constraints imposed by material, fabrication or assembly. Rationalization algorithms can convert a freeform design into a form feasible for production, but often require design modifications that might not comply with the design intent. In addition, they only offer limited support for(More)
Paneling an architectural freeform surface refers to an approximation of the design surface by a set of panels that can be manufactured using a selected technology at a reasonable cost, while respecting the design intent and achieving the desired aesthetic quality of panel layout and surface smoothness. Eigensatz and co-workers [Eigensatz et al. 2010] have(More)
  • 1