Mario Berljafa

Learn More
Generalized rational Krylov decompositions are matrix relations which, under certain conditions, are associated with rational Krylov spaces. We study the algebraic properties of such decompositions and present an implicit Q theorem for rational Krylov spaces. Transformations on rational Krylov decompositions allow for changing the poles of a rational Krylov(More)
In one of the most important methods in Density Functional Theory – the FullPotential Linearized Augmented Plane Wave (FLAPW) method – dense generalized eigenproblems are organized in long sequences. Moreover each eigenproblem is strongly correlated to the next one in the sequence. We propose a novel approach which exploits such correlation through the use(More)
Since version 2.4 of the RKToolbox, the rat krylov function can simulate the parallel construction of a rational Krylov basis. This is done by imposing various nonzero patterns in a so-called continuation matrix T . Simply speaking, the j-th column of this matrix contains the coefficients of the linear combination of j rational Krylov basis vectors which(More)
Rational Krylov methods are applicable to a wide range of scientific computing problems, and the rational Arnoldi algorithm is a commonly used procedure for computing an orthonormal basis of a rational Krylov space. Typically, the computationally most expensive component of this algorithm is the solution of a large linear system of equations at each(More)
In many scientific applications the solution of non-linear differential equations are obtained through the set-up and solution of a number of successive eigenproblems. These eigenproblems can be regarded as a sequence whenever the solution of one problem fosters the initialization of the next. In addition, some eigenproblem sequences show a connection(More)
In Density Functional Theory simulations based on the LAPW method, each self-consistent cycle comprises dozens of large dense generalized eigenproblems. In contrast to real-space methods, eigenpairs solving for problems at distinct cycles have either been believed to be independent or at most very loosely connected. In a recent study [7], it was proposed to(More)
  • 1