Marina V. Rodnina

Learn More
The ribosome selects aminoacyl-tRNA (aa-tRNA) matching to the mRNA codon from the bulk of non-matching aa-tRNAs in two consecutive selection steps, initial selection and proofreading. Here we report the kinetic analysis of selection taking place under conditions where the overall selectivity was close to values observed in vivo and initial selection and(More)
The kinetic mechanism of elongation factor Tu (EF-Tu)-dependent binding of Phe-tRNAPhe to the A site of poly(U)-programmed Escherichia coli ribosomes has been established by pre-steady-state kinetic experiments. Six steps were distinguished kinetically, and their elemental rate constants were determined either by global fitting, or directly by dissociation(More)
Elongation factor G (EF-G) is a GTPase that is involved in the translocation of bacterial ribosomes along messenger RNA during protein biosynthesis. In contrast to current models, EF-G-dependent GTP hydrolysis is shown to precede, and greatly accelerate, the rearrangement of the ribosome that leads to translocation. Domain IV of the EF-G structure is(More)
The elongation cycle of protein synthesis is completed by translocation, a rearrangement during which two tRNAs bound to the mRNA move on the ribosome. The reaction is promoted by elongation factor G (EF-G) and accelerated by GTP hydrolysis. Here we report a pre-steady-state kinetic analysis of translocation. The kinetic model suggests that GTP hydrolysis(More)
The fidelity of aminoacyl-tRNA (aa-tRNA) selection by the bacterial ribosome is determined by initial selection before and proofreading after GTP hydrolysis by elongation factor Tu. Here we report the rate constants of A-site binding of a near-cognate aa-tRNA. The comparison with the data for cognate aa-tRNA reveals an additional, important contribution to(More)
The L7/12 stalk of the large subunit of bacterial ribosomes encompasses protein L10 and multiple copies of L7/12. We present crystal structures of Thermotoga maritima L10 in complex with three L7/12 N-terminal-domain dimers, refine the structure of an archaeal L10E N-terminal domain on the 50S subunit, and identify these elements in(More)
Elongation factor P (EF-P) is a translation factor of unknown function that has been implicated in a great variety of cellular processes. Here, we show that EF-P prevents ribosome from stalling during synthesis of proteins containing consecutive prolines, such as PPG, PPP, or longer proline strings, in natural and engineered model proteins. EF-P promotes(More)
Elongation factor (EF) G promotes tRNA translocation on the ribosome. We present three-dimensional reconstructions, obtained by cryo-electron microscopy, of EF-G-ribosome complexes before and after translocation. In the pretranslocation state, domain 1 of EF-G interacts with the L7/12 stalk on the 50S subunit, while domain 4 contacts the shoulder of the 30S(More)
Ribosomes take an active part in aminoacyl-tRNA selection by distinguishing correct and incorrect codon-anticodon pairs. Correct codon-anticodon complexes are recognized by a network of ribosome contacts that are specific for each position of the codon-anticodon duplex and involve A-minor RNA interactions. Here, we show by kinetic analysis that single(More)
The stoichiometry of elongation factor Tu (EF-Tu) and GTP in the complex with aminoacyl-tRNA and the consumption of GTP during peptide bond formation on the ribosome were studied in the Escherichia coli system. The ribosomes were programmed either with two different heteropolymeric mRNAs coding for Met-Phe-Thr-Ile ... (mMFTI) or Met-Phe-Phe-Gly ... (mMFFG)(More)