Marina R. Sartori

Learn More
Heart rate in vertebrates is controlled by activity in the autonomic nervous system. In spontaneously active or experimentally prepared animals, inhibitory parasympathetic control is predominant and is responsible for instantaneous changes in heart rate, such as occur at the first air breath following a period of apnoea in discontinuous breathers like(More)
Development within the cleidoic egg of birds and reptiles presents the embryo with the problem of accumulation of wastes from nitrogen metabolism. Ammonia derived from protein catabolism is converted into the less toxic product urea or relatively insoluble uric acid. The pattern of nitrogen excretion of the green iguana, Iguana iguana, was determined during(More)
Oxygen consumption (VO2), heart rate (fH), heart mass (Mh) and body mass (Mb) were measured during embryonic incubation and in hatchlings of green iguana (Iguana iguana). Mean fH and VO2 were unvarying in early stage embryos. VO2 increased exponentially during the later stages of embryonic development, doubling by the end of incubation, while fH was(More)
Measurement of heart rate (fH) in embryonic reptiles has previously imposed some degree of invasive treatment on the developing embryo. Recently a non-invasive technique of fH detection from intact eggs was developed for commercial avian breeders and has since been used in biological research. This device uses infrared light, enabling it to detect(More)
A chorioallantoic membrane artery in embryos of the red-footed tortoise, Chelonoidis carbonaria was occlusively cannulated for measurement of blood pressure and injection of drugs. Two age groups of embryos in the final 10 % of incubation were categorized by the ratio of embryonic body to yolk mass. All embryos first received cholinergic and β-adrenergic(More)
The autonomic control of heart rate was studied throughout development in embryos of the green iguana, Iguana iguana by applying receptor agonists and antagonists of the parasympathetic and sympathetic systems. Acetylcholine (Ach) slowed or stopped the heart and atropine antagonized the response to Ach indicating the presence of muscarinic cholinoceptors on(More)
  • 1