Marina Poettler

Learn More
Due to their special physicochemical properties, iron nanoparticles offer new promising possibilities for biomedical applications. For bench to bedside translation of super-paramagnetic iron oxide nanoparticles (SPIONs), safety issues have to be comprehensively clarified. To understand concentration-dependent nanoparticle-mediated toxicity, the exact(More)
Overexpression of CD98hc (SLC3A2) occurs in a variety of cancers and is suspected to contribute to tumor growth. CD98, a heterodimeric transmembrane protein, physically associates with certain integrin β subunit cytoplasmic domains via its heavy chain, CD98hc. CD98hc regulates adhesion-induced intracellular signal transduction via integrins, thereby,(More)
Combining the concept of magnetic drug targeting and photodynamic therapy is a promising approach for the treatment of cancer. A high selectivity as well as significant fewer side effects can be achieved by this method, since the therapeutic treatment only takes place in the area where accumulation of the particles by an external electromagnet and radiation(More)
Major problems of cancer treatment using systemic chemotherapy are severe side effects. Magnetic drug targeting (MDT) employing superparamagnetic iron oxide nanoparticles (SPION) loaded with chemotherapeutic agents may overcome this dilemma by increasing drug accumulation in the tumor and reducing toxic side effects in the healthy tissue. For translation of(More)
  • 1