#### Filter Results:

#### Publication Year

1995

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

#### Data Set Used

Learn More

Tony Jebara We present a general framework for discriminative estimation based on the maximum entropy principle and its extensions. All calculations involve distributions over structures and/or parameters rather than specific settings and reduce to relative entropy projections. This holds even when the data is not separable within the chosen parametric… (More)

We present a new view of clustering and segmen-tation by pairwise similarities. We interpret the similarities as edge ows in a Markov random walk and study the eigenvalues and eigenvectors of the walk's transition matrix. This view shows that spectral methods for clustering and segmentation have a probabilistic foundation. We prove that the Normalized Cut… (More)

We present a new view of image segmentation by pairwise similarities. We interpret the similarities as edge ows in a Markov random walk and study the eigenvalues and eigenvectors of the walk's transition matrix. This interpretation shows that spectral methods for clustering and segmentation have a probabilistic foundation. In particular, we prove that the… (More)

In this paper we present decomposable priors, a family of priors over structure and parameters of tree belief nets for which Bayesian learning with complete observations is tractable, in the sense that the posterior is also decomposable and can be completely determined ana lytically in polynomial time. This fol lows from two main results: First, we show… (More)

This paper describes the mixtures-of-trees model, a probabilistic model for discrete multidimensional domains. Mixtures-of-trees generalize the probabilistic trees of Chow and Liu [6] in a different and complementary direction to that of Bayesian networks. We present efficient algorithms for learning mixtures-of-trees models in maximum likelihood and… (More)

We propose to solve the combinatorial problem of finding the highest scoring Bayesian network structure from data. This structure learning problem can be viewed as an inference problem where the variables specify the choice of parents for each node in the graph. The key combinatorial difficulty arises from the global constraint that the graph structure has… (More)

- Henry Schneiderman, Takeo Kanade, Carnegie Mellon, Alex Pentland, Dean Pomerleau, Assistware Technology +31 others
- 2000

In this thesis, we describe a statistical method for 3D object detection. In this method, we decompose the 3D geometry of each object into a small number of viewpoints. For each viewpoint , we construct a decision rule that determines if the object is present at that specific orientation. Each decision rule uses the statistics of both object appearance and… (More)

- Marina Meila
- ICML
- 2005

This paper views clusterings as elements of a lattice. Distances between clusterings are analyzed in their relationship to the lattice. From this vantage point, we first give an axiomatic characterization of some criteria for comparing clusterings, including the variation of information and the unadjusted Rand index. Then we study other distances between… (More)

- Marina Meila
- COLT
- 2003