Marina Gottikh

  • Citations Per Year
Learn More
Upon HIV-1 infection of a target cell, the viral reverse transcriptase (RT) copies the genomic RNA to synthesize the viral DNA. The genomic RNA is within the incoming HIV-1 core where it is coated by molecules of nucleocapsid (NC) protein that chaperones the reverse transcription process. Indeed, the RT chaperoning properties of NC extend from the(More)
Integration of the proviral DNA into the genome of infected cells is a key step of HIV-1 replication. Integration is catalyzed by the viral enzyme integrase (IN). 6-oxocytidine-containing oligonucleotides were found to be efficient inhibitors of integrase in vitro. The inhibitory effect is sequence-specific and strictly requires the presence of the(More)
Since currently available therapies against HIV/AIDS still show important drawbacks, the development of novel anti-HIV treatments is a key issue. We recently characterized methylated oligoribonucleotides (mONs) that extensively inhibit HIV-1 replication in primary T cells at nanomolar concentrations. The mONs were shown to target both HIV-1 reverse(More)
Integration of a DNA copy of the HIV-1 genome into chromosomal DNA of infected cells is a key step of viral replication. Integration is carried out by integrase, a viral protein which binds to both ends of viral DNA and catalyses reactions of the 3'-end processing and strand transfer. A 3'-3' branched oligonucleotide functionalised by the intercalator(More)
HIV-1 DNA integration is carried out by integrase, a viral protein which binds to specific sequences located on both extremities of the HIV-1 DNA LTR. Inhibition of integration was observed with submicromolar concentrations of mono- or bifunctionalized 11-mer oligonucleotide-intercalators, which were designed to form an alternate strand triple helix with(More)
  • 1