Marina Freudzon

Learn More
Mammalian oocytes are arrested in meiotic prophase by an inhibitory signal from the surrounding somatic cells in the ovarian follicle. In response to luteinizing hormone (LH), which binds to receptors on the somatic cells, the oocyte proceeds to second metaphase, where it can be fertilized. Here we investigate how the somatic cells regulate the(More)
Luteinizing hormone (LH) acts on ovarian follicles to reinitiate meiosis in prophase-arrested mammalian oocytes, and this has been proposed to occur by interruption of a meioisis-inhibitory signal that is transmitted through gap junctions into the oocyte from the somatic cells that surround it. To investigate this idea, we microinjected fluorescent tracers(More)
The meiotic cell cycle in mouse oocytes is arrested in prophase, and then restarted when LH acts on the surrounding granulosa cells. The granulosa cells keep meiosis arrested by providing a source of cGMP that diffuses into the oocyte through gap junctions, and LH restarts the cell cycle by closing the junctions and by decreasing granulosa cell cGMP, thus(More)
The mammalian oocyte develops within a complex of somatic cells known as a follicle, within which signals from the somatic cells regulate the oocyte, and signals from the oocyte regulate the somatic cells. Because isolation of the oocyte from the follicle disrupts these communication pathways, oocyte physiology is best studied within an intact follicle.(More)
The maintenance of meiotic prophase arrest in fully grown vertebrate oocytes depends on the activity of a G(s) G-protein that activates adenylyl cyclase and elevates cAMP, and in the mouse oocyte, G(s) is activated by a constitutively active orphan receptor, GPR3. To determine whether the action of luteinizing hormone (LH) on the mouse ovarian follicle(More)
Chronic tegumentary leishmaniasis is characterized by a scarcity of parasites in lesions and a heightened inflammatory response. Deregulated and hyperactive inflammation contributes to tissue damage and parasite persistence. The mechanisms by which immune cells are recruited to the lesion and their relationship to clinical outcomes remain elusive. We(More)
  • 1