Marina Castro Zalis

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
We demonstrate an artificial three-dimensional (3D) electrical active human neuronal network system, by the growth of brain neural progenitors in highly porous low density electrospun poly-ε-caprolactone (PCL) fiber scaffolds. In neuroscience research cell-based assays are important experimental instruments for studying neuronal function in health and(More)
Identification of the key components in the physical and chemical milieu directing donor cells into a desired phenotype is a requirement in the investigation of bioscaffolds for the advancement of cell-based therapies for retinal neurodegeneration. We explore the effect of electrospun poly-ε-caprolactone (PCL) fiber scaffold topography and functionalization(More)
BACKGROUND Disease progression in retinal neurodegeneration is strongly correlated to immune cell activation, which may have either a neuroprotective or neurotoxic effect. Increased knowledge about the immune response profile and retinal neurodegeneration may lead to candidate targets for treatments. Therefore, we have used the explanted retina as a model(More)
Concentration of viable cell populations in suspension is of interest for several clinical and pre-clinical applications. Here, we report that microfluidic acoustophoresis is an effective method to efficiently concentrate live and viable cells with high target purity without any need for protein fluorescent labeling using antibodies or over-expression. We(More)
Primary retinal cell cultures and immunocytochemistry are important experimental platforms in ophthalmic research. Translation of retinal cells from their native environment to the in vitro milieu leads to cellular stress, jeopardizing their in vivo phenotype features. Moreover, the specificity and stability of many retinal immunochemical markers are poorly(More)
  • 1