Marina Basaglia

Learn More
BACKGROUND Robust yeasts with high inhibitor, temperature, and osmotic tolerance remain a crucial requirement for the sustainable production of lignocellulosic bioethanol. These stress factors are known to severely hinder culture growth and fermentation performance. RESULTS Grape marc was selected as an extreme environment to search for innately robust(More)
 Rhizobium "hedysari" HCNT1 and Sinorhizobium meliloti 41 were investigated and compared for their ability to shift from a typical aerobic, growth-supporting metabolism to O2–limiting, low-energy-expending, basal activities. Such metabolic conversion leads bacteria to stop reproduction although allows them to survive. Once anaerobic, both rhizobia started(More)
A study was carried out to assess the behaviour, in terms of strain survival and genetic stability, of genetically modified micro-organisms (GEMs) during their storage in commercial-type agricultural inoculants. Three genetically modified Rhizobium leguminosarum biovar viciae strains were constructed, using a gene cassette containing an inducible lacZ gene(More)
Soil microbial community composition and activity could be affected by suitable manipulation of the environment they live in. If correctly applied such an approach could become a very effective way to remediate excess of chemicals. The concentration of nitrogen, especially nitrate deriving from agricultural managements, is generally found to increase in(More)
A plasmid-borne, firefly-derived, luciferase gene (luc) was inserted and stably inherited in Sinorhizobium meliloti 41 as a reporter gene. The strain obtained, S. meliloti 41/pRP4-luc, and its parental strain served as a model system for viable but not culturable (VBNC) resuscitation experiments in both in vitro and soil samples. Incubation under oxygen(More)
Four LAB strains, isolated from Bulgarian home made white brine cheese, were selected for their effective inhibition against Listeria monocytogenes. According to their biochemical and physiological characteristics, the strains were classified as members of Enterococcus genus, and then identified as Enterococcus faecium by 16S rDNA sequencing. Their(More)
A clone positive for D-carbamoylase activity (2.7 kb HindIII-BamHI DNA fragment) was obtained by screening a genomic library of Agrobacterium radiobacter in Escherichia coli. This DNA fragment contains an open reading frame of 912 bp which is predicted to encode a peptide of 304 amino acids with a calculated molecular mass of 34247 Da. The D-carbamoylase(More)
The development of a yeast strain that converts raw starch to ethanol in one step (called Consolidated Bioprocessing, CBP) could significantly reduce the commercial costs of starch-based bioethanol. An efficient amylolytic Saccharomyces cerevisiae strain suitable for industrial bioethanol production was developed in this study. Codon-optimized variants of(More)
The development of a yeast that converts raw starch to ethanol in one step (called consolidated bioprocessing) could yield large cost reductions in the bioethanol industry. The aim of this study was to develop an efficient amylolytic Saccharomyces cerevisiae strain suitable for industrial bioethanol production. A native and codon-optimized variant of the(More)
Cupriavidus necator DSM 545 is a well-known polyhydroxyalkanoates (PHAs) producer, but unable to grow on lactose. The aim of this study was to construct a recombinant strain of C. necator that can use lactose-containing waste material such as cheese whey, to produce PHAs. One of the intracellular PHA depolymerases (phaZ1) of C. necator was chosen to insert(More)