Learn More
Therapeutic Abs possess several clinically relevant mechanisms of action including perturbation of tumor cell signaling, activation of complement-dependent cytotoxicity, Ab-dependent cellular cytotoxicity (ADCC), Ab-dependent cellular phagocytosis (ADCP), and induction of adaptive immunity. In view of the important role of phagocytic lineage cells in the(More)
We report the first preclinical in vitro and in vivo comparison of GA101 (obinutuzumab), a novel glycoengineered type II CD20 monoclonal antibody, with rituximab and ofatumumab, the two currently approved type I CD20 antibodies. The three antibodies were compared in assays measuring direct cell death (AnnexinV/PI staining and time-lapse microscopy),(More)
PURPOSE CEA TCB is a novel IgG-based T-cell bispecific (TCB) antibody for the treatment of CEA-expressing solid tumors currently in phase I clinical trials (NCT02324257). Its format incorporates bivalent binding to CEA, a head-to-tail fusion of CEA- and CD3e-binding Fab domains and an engineered Fc region with completely abolished binding to FcγRs and C1q.(More)
PURPOSE CEA TCB (RG7802, RO6958688) is a novel T-cell bispecific antibody, engaging CD3ε upon binding to carcinoembryonic antigen (CEA) on tumor cells. Containing an engineered Fc region, conferring an extended blood half-life while preventing side effects due to activation of innate effector cells, CEA TCB potently induces tumor lysis in mouse tumors. Here(More)
Dysfunctional T cells present in malignant lesions are characterized by a sustained and highly diverse expression of inhibitory receptors, also referred to as immune checkpoints. Yet, their relative functional significance in different cancer types remains incompletely understood. In this study, we provide a comprehensive characterization of the diversity(More)
We have isolated a new cell line (metGM) obtained from the spontaneous lung metastases of the mouse MCa mammary carcinoma. MetGM is a stable cell line which, after one year from its isolation, grows in vitro in suspension, forming cell aggregates, with cells that show irregular blabbing borders, active protein synthesis and convoluted nuclei and which have(More)
The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR(More)
Carcinoembryonic antigen T cell bispecific antibody (CEA TCB) is a bispecific antibody used to recognize CEA and CD3e via a novel molecular format (2:1) that induces T cell-mediated killing of CEA over-expressing tumors while sparing primary cells with low CEA expression. CEA TCB treatment inhibits tumor growth and generates a highly inflamed tumor(More)
CEA TCB is a novel T-cell-bispecific (TCB) antibody targeting the carcinoembryonic antigen (CEA) expressed on tumor cells and the CD3 epsilon chain (CD3e) present on T cells, which is currently in Phase 1 clinical trials (NCT02324257) for the treatment of CEA-positive solid tumors. Because the human CEA (hCEA) binder of CEA TCB does not cross-react with(More)
T-cell bispecific antibodies (TCBs) are a novel therapeutic tool designed to selectively recruit T-cells to tumor cells and simultaneously activate them. However, it is currently unknown whether the dysfunctional state of T-cells, embedded into the tumor microenvironment, imprints on the therapeutic activity of TCBs. We performed a comprehensive analysis of(More)