Learn More
The development of simultaneous resistance to multiple drugs in cultured cells occurs after selection for resistance to single agents. This multidrug-resistance phenotype is thought to mimic multidrug-resistance in human tumors treated with chemotherapy. Both the expression of a membrane protein, termed P170 or P-glycoprotein, and the expression of a cloned(More)
We have established four cell lines derived from the human KB carcinoma cell line which express high-level multiple drug resistance. One of these lines was selected for resistance to colchicine, one was selected for resistance to colchicine in the presence of the tumor promoter, mezerein, one for resistance to vinblastine, and one for resistance to(More)
To define sequences in the human multidrug resistance (MDR1) promoter that influence transcription, we measured the activity of MDR1 promoter constructs using luciferase as a reporter gene. Deletion of promoter sequences to -121 (relative to the transcription initiation site) had very little effect on promoter activity in transiently transfected cells.(More)
The calcium channel blockers verapamil and diltiazem have been shown to reverse multidrug resistance, but the mechanism of action of these agents is still unknown. We measured [3H]verapamil, [3H]desmethoxyverapamil, [3H]diltiazem, and [3H]nitrendipine binding to membrane vesicles made from drug-sensitive (KB-3-1), multidrug-resistant (KB-C4 and KB-V1), and(More)
To investigate the regulation of expression of the human mdr1 gene, the response of the mdr1 promoter to signals involved in cell proliferation was examined. The activity of the mdr1 promoter was measured in transiently transfected NIH 3T3 cells, which were stimulated to enter the cell cycle by addition of serum, platelet-derived growth factor, or(More)
Multiple drug resistance of tumor cells is a common problem in cancer therapy. We have demonstrated that membrane vesicles from highly multidrug-resistant human KB carcinoma cell lines exhibit increased specific and saturable binding of vinblastine. To identify the molecules that bind vinblastine, membrane vesicles from multidrug-resistant cells were(More)
Synthetic dihydropyridine analogs were screened to determine whether they would reverse multidrug resistance of a multidrug-resistant human KB carcinoma cell line, KB-C1. Among twenty-four dihydropyridine analogs examined, thirteen almost completely overcame drug resistance (group A), nine partially overcame resistance (group B) and two did not reverse(More)
P-glycoprotein, the product of the MDR1 gene (multidrug resistance gene 1), is an energy-dependent efflux pump associated with treatment failure in some hematopoietic malignancies. Its expression is regulated during normal hematopoietic differentiation, although its function in normal hematopoietic cells is unknown. To identify cellular factors that(More)
Human KB carcinoma cells resistant to high levels of colchicine, vinblastine, vincristine, adriamycin, and actinomycin D exhibit reduced accumulation of these structurally unrelated chemotherapeutic agents (Akiyama, S.-I., Fojo, A., Hanover, J. A., Pastan, I., and Gottesman, M. M. (1985) Somatic Cell Mol. Genet. 11, 117-126; Fojo, A., Akiyama, S.-I.,(More)
The accumulation of daunomycin in drug-sensitive and multidrug-resistant human KB cells was examined using light microscopy to detect the inherent fluorescence of daunomycin. Intracellular accumulation of fluorescent drug occurred rapidly in parental KB cells and was markedly reduced in several multidrug-resistant mutants. The addition of verapamil, which(More)